summaryrefslogtreecommitdiff
path: root/src/mem/dramsim2.hh
AgeCommit message (Collapse)Author
2015-03-02mem: Split port retry for all different packet classesAndreas Hansson
This patch fixes a long-standing isue with the port flow control. Before this patch the retry mechanism was shared between all different packet classes. As a result, a snoop response could get stuck behind a request waiting for a retry, even if the send/recv functions were split. This caused message-dependent deadlocks in stress-test scenarios. The patch splits the retry into one per packet (message) class. Thus, sendTimingReq has a corresponding recvReqRetry, sendTimingResp has recvRespRetry etc. Most of the changes to the code involve simply clarifying what type of request a specific object was accepting. The biggest change in functionality is in the cache downstream packet queue, facing the memory. This queue was shared by requests and snoop responses, and it is now split into two queues, each with their own flow control, but the same physical MasterPort. These changes fixes the previously seen deadlocks.
2014-08-26mem: Fix DRAMSim2 cycle check when restoring from checkpointAndreas Hansson
This patch ensures the cycle check is still valid even restoring from a checkpoint. In this case the DRAMSim2 cycle count is relative to the startTick rather than 0.
2014-02-18mem: Add a wrapped DRAMSim2 memory controllerAndreas Hansson
This patch adds DRAMSim2 as a memory controller by wrapping the external library and creating a sublass of AbstractMemory that bridges between the semantics of gem5 and the DRAMSim2 interface. The DRAMSim2 wrapper extracts the clock period from the config file. There is no way of extracting this information from DRAMSim2 itself, so we simply read the same config file and get it from there. To properly model the response queue, the wrapper keeps track of how many transactions are in the actual controller, and how many are stacking up waiting to be sent back as responses (in the wrapper). The latter requires us to move away from the queued port and manage the packets ourselves. This is due to DRAMSim2 not having any flow control on the response path. DRAMSim2 assumes that the transactions it is given are matching the burst size of the choosen memory. The wrapper checks to ensure the cache line size of the system matches the burst size of DRAMSim2 as there are currently no provisions to split the system requests. In theory we could allow a cache line size smaller than the burst size, but that would lead to inefficient use of the DRAM, so for not we fatal also in this case.