summaryrefslogtreecommitdiff
path: root/src/mem/mport.hh
AgeCommit message (Collapse)Author
2012-04-14MEM: Separate snoops and normal memory requests/responsesAndreas Hansson
This patch introduces port access methods that separates snoop request/responses from normal memory request/responses. The differentiation is made for functional, atomic and timing accesses and builds on the introduction of master and slave ports. Before the introduction of this patch, the packets belonging to the different phases of the protocol (request -> [forwarded snoop request -> snoop response]* -> response) all use the same port access functions, even though the snoop packets flow in the opposite direction to the normal packet. That is, a coherent master sends normal request and receives responses, but receives snoop requests and sends snoop responses (vice versa for the slave). These two distinct phases now use different access functions, as described below. Starting with the functional access, a master sends a request to a slave through sendFunctional, and the request packet is turned into a response before the call returns. In a system without cache coherence, this is all that is needed from the functional interface. For the cache-coherent scenario, a slave also sends snoop requests to coherent masters through sendFunctionalSnoop, with responses returned within the same packet pointer. This is currently used by the bus and caches, and the LSQ of the O3 CPU. The send/recvFunctional and send/recvFunctionalSnoop are moved from the Port super class to the appropriate subclass. Atomic accesses follow the same flow as functional accesses, with request being sent from master to slave through sendAtomic. In the case of cache-coherent ports, a slave can send snoop requests to a master through sendAtomicSnoop. Just as for the functional access methods, the atomic send and receive member functions are moved to the appropriate subclasses. The timing access methods are different from the functional and atomic in that requests and responses are separated in time and send/recvTiming are used for both directions. Hence, a master uses sendTiming to send a request to a slave, and a slave uses sendTiming to send a response back to a master, at a later point in time. Snoop requests and responses travel in the opposite direction, similar to what happens in functional and atomic accesses. With the introduction of this patch, it is possible to determine the direction of packets in the bus, and no longer necessary to look for both a master and a slave port with the requested port id. In contrast to the normal recvFunctional, recvAtomic and recvTiming that are pure virtual functions, the recvFunctionalSnoop, recvAtomicSnoop and recvTimingSnoop have a default implementation that calls panic. This is to allow non-coherent master and slave ports to not implement these functions.
2012-03-30MEM: Introduce the master/slave port sub-classes in C++William Wang
This patch introduces the notion of a master and slave port in the C++ code, thus bringing the previous classification from the Python classes into the corresponding simulation objects and memory objects. The patch enables us to classify behaviours into the two bins and add assumptions and enfore compliance, also simplifying the two interfaces. As a starting point, isSnooping is confined to a master port, and getAddrRanges to slave ports. More of these specilisations are to come in later patches. The getPort function is not getMasterPort and getSlavePort, and returns a port reference rather than a pointer as NULL would never be a valid return value. The default implementation of these two functions is placed in MemObject, and calls fatal. The one drawback with this specific patch is that it requires some code duplication, e.g. QueuedPort becomes QueuedMasterPort and QueuedSlavePort, and BusPort becomes BusMasterPort and BusSlavePort (avoiding multiple inheritance). With the later introduction of the port interfaces, moving the functionality outside the port itself, a lot of the duplicated code will disappear again.
2012-03-22MEM: Split SimpleTimingPort into PacketQueue and portsAndreas Hansson
This patch decouples the queueing and the port interactions to simplify the introduction of the master and slave ports. By separating the queueing functionality from the port itself, it becomes much easier to distinguish between master and slave ports, and still retain the queueing ability for both (without code duplication). As part of the split into a PacketQueue and a port, there is now also a hierarchy of two port classes, QueuedPort and SimpleTimingPort. The QueuedPort is useful for ports that want to leave the packet transmission of outgoing packets to the queue and is used by both master and slave ports. The SimpleTimingPort inherits from the QueuedPort and adds the implemention of recvTiming and recvFunctional through recvAtomic. The PioPort and MessagePort are cleaned up as part of the changes. --HG-- rename : src/mem/tport.cc => src/mem/packet_queue.cc rename : src/mem/tport.hh => src/mem/packet_queue.hh
2012-02-24MEM: Prepare mport for master/slave splitAndreas Hansson
This patch simplifies the mport in preparation for a split into a master and slave role for the message ports. In particular, sendMessageAtomic was only used in a single location and similarly so sendMessageTiming. The affected interrupt device is updated accordingly.
2008-10-12Create a message port for sending messages as apposed to reading/writing a ↵Gabe Black
memory range.