Age | Commit message (Collapse) | Author |
|
Previously the directory covered a flat address range that always
started from address 0. This change adds a vector of address ranges
with interleaving and hashing that each directory keeps track of and
the necessary flexibility to support systems with non continuous
memory ranges.
Change-Id: I6ea1c629bdf4c5137b7d9c89dbaf6c826adfd977
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/2903
Reviewed-by: Bradford Beckmann <brad.beckmann@amd.com>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Maintainer: Jason Lowe-Power <jason@lowepower.com>
|
|
DMA sequencers and protocols can currently only issue one DMA access at
a time. This patch implements the necessary functionality to support
multiple outstanding DMA requests in Ruby.
|
|
This patch is imported from reviewboard patch 2551 by Nilay.
This patch moves from a dynamically defined MachineType to a statically
defined one. The need for this patch was felt since a dynamically defined
type prevents us from having types for which no machine definition may
exist.
The following changes have been made:
i. each machine definition now uses a type from the MachineType enumeration
instead of any random identifier. This required changing the grammar and the
*.sm files.
ii. MachineType enumeration defined statically in RubySlicc_Exports.sm.
* * *
normal protocol fixes for nilay's parser machine type fix
|
|
This patch changes MessageBuffer and TimerTable, two structures used for
buffering messages by components in ruby. These structures would no longer
maintain pointers to clock objects. Functions in these structures have been
changed to take as input current time in Tick. Similarly, these structures
will not operate on Cycle valued latencies for different operations. The
corresponding functions would need to be provided with these latencies by
components invoking the relevant functions. These latencies should also be
in Ticks.
I felt the need for these changes while trying to speed up ruby. The ultimate
aim is to eliminate Consumer class and replace it with an EventManager object in
the MessageBuffer and TimerTable classes. This object would be used for
scheduling events. The event itself would contain information on the object and
function to be invoked.
In hindsight, it seems I should have done this while I was moving away from use
of a single global clock in the memory system. That change led to introduction
of clock objects that replaced the global clock object. It never crossed my
mind that having clock object pointers is not a good design. And now I really
don't like the fact that we have separate consumer, receiver and sender
pointers in message buffers.
|
|
MessageBuffer is a SimObject now. There were protocols that still declared
some of the message buffers are variables of the controller, but not as input
parameters. Special handling was required for these variables in the SLICC
compiler. This patch changes this. Now all message buffers are declared as
input parameters.
|
|
This patch eliminates the type Address defined by the ruby memory system.
This memory system would now use the type Addr that is in use by the
rest of the system.
|
|
|
|
This patch removes the data block present in the directory entry structure
of each protocol in gem5's mainline. Firstly, this is required for moving
towards common set of memory controllers for classic and ruby memory systems.
Secondly, the data block was being misused in several places. It was being
used for having free access to the physical memory instead of calling on the
memory controller.
From now on, the directory controller will not have a direct visibility into
the physical memory. The Memory Vector object now resides in the
Memory Controller class. This also means that some significant changes are
being made to the functional accesses in ruby.
|
|
This patch is the final patch in a series of patches. The aim of the series
is to make ruby more configurable than it was. More specifically, the
connections between controllers are not at all possible (unless one is ready
to make significant changes to the coherence protocol). Moreover the buffers
themselves are magically connected to the network inside the slicc code.
These connections are not part of the configuration file.
This patch makes changes so that these connections will now be made in the
python configuration files associated with the protocols. This requires
each state machine to expose the message buffers it uses for input and output.
So, the patch makes these buffers configurable members of the machines.
The patch drops the slicc code that usd to connect these buffers to the
network. Now these buffers are exposed to the python configuration system
as Master and Slave ports. In the configuration files, any master port
can be connected any slave port. The file pyobject.cc has been modified to
take care of allocating the actual message buffer. This is inline with how
other port connections work.
|
|
There are two changes this patch makes to the way configurable members of a
state machine are specified in SLICC. The first change is that the data
member declarations will need to be separated by a semi-colon instead of a
comma. Secondly, the default value to be assigned would now use SLICC's
assignment operator i.e. ':='.
|
|
As of now, the enqueue statement can take in any number of 'pairs' as
argument. But we only use the pair in which latency is the key. This
latency is allowed to be either a fixed integer or a member variable of
controller in which the expression appears. This patch drops the use of pairs
in an enqueue statement. Instead, an expression is allowed which will be
interpreted to be the latency of the enqueue. This expression can anything
allowed by slicc including a constant integer or a member variable.
|
|
|
|
The patch started of with replacing Time with Cycles in the Consumer class.
But to get ruby to compile, the rest of the changes had to be carried out.
Subsequent patches will further this process, till we completely replace
Time with Cycles.
|
|
|
|
This patch rpovides functional access support in Ruby. Currently only
the M5Port of RubyPort supports functional accesses. The support for
functional through the PioPort will be added as a separate patch.
|
|
The access permissions for the directory entries are not being set correctly.
This is because pointers are not used for handling directory entries.
function. get and set functions for access permissions have been added to the
Controller state machine. The changePermission() function provided by the
AbstractEntry and AbstractCacheEntry classes has been exposed to SLICC
code once again. The set_permission() functionality has been removed.
NOTE: Each protocol will have to define these get and set functions in order
to compile successfully.
|
|
Forgot to add this to MI_example in my previous patch.
|
|
This patch integrates permissions with cache and memory states, and then
automates the setting of permissions within the generated code. No longer
does one need to manually set the permissions within the setState funciton.
This patch will faciliate easier functional access support by always correctly
setting permissions for both cache and memory states.
--HG--
rename : src/mem/slicc/ast/EnumDeclAST.py => src/mem/slicc/ast/StateDeclAST.py
rename : src/mem/slicc/ast/TypeFieldEnumAST.py => src/mem/slicc/ast/TypeFieldStateAST.py
|
|
Reordered vnet priorities to agree with PerfectSwitch for protocols MI_example,
MOESI_CMP_token, and MOESI_hammer
|
|
|
|
|
|
|
|
|
|
This changeset contains a lot of different changes that are too
mingled to separate. They are:
1. Added MOESI_CMP_directory
I made the changes necessary to bring back MOESI_CMP_directory,
including adding a DMA controller. I got rid of MOESI_CMP_directory_m
and made MOESI_CMP_directory use a memory controller. Added a new
configuration for two level protocols in general, and
MOESI_CMP_directory in particular.
2. DMA Sequencer uses a generic SequencerMsg
I will eventually make the cache Sequencer use this type as well. It
doesn't contain an offset field, just a physical address and a length.
MI_example has been updated to deal with this.
3. Parameterized Controllers
SLICC controllers can now take custom parameters to use for mapping,
latencies, etc. Currently, only int parameters are supported.
|
|
The DMASequencer was still using a parameter from the old RubyConfig,
causing an offset error when the requested data wasn't block aligned.
This changeset also includes a fix to MI_example for a similar bug.
|
|
This was done with an automated process, so there could be things that were
done in this tree in the past that didn't make it. One known regression
is that atomic memory operations do not seem to work properly anymore.
|