Age | Commit message (Collapse) | Author |
|
Previously the directory covered a flat address range that always
started from address 0. This change adds a vector of address ranges
with interleaving and hashing that each directory keeps track of and
the necessary flexibility to support systems with non continuous
memory ranges.
Change-Id: I6ea1c629bdf4c5137b7d9c89dbaf6c826adfd977
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/2903
Reviewed-by: Bradford Beckmann <brad.beckmann@amd.com>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Maintainer: Jason Lowe-Power <jason@lowepower.com>
|
|
|
|
This patch eliminates the type Address defined by the ruby memory system.
This memory system would now use the type Addr that is in use by the
rest of the system.
|
|
For many years the slicc symbol table has supported overloaded functions in
external classes. This patch extends that support to functions that are not
part of classes (a.k.a. no parent). For example, this support allows slicc
to understand that mapAddressToRange is overloaded and the NodeID is an
optional parameter.
|
|
The first two levels (L0, L1) are private to the core, the third level (L2)is
possibly shared. The protocol supports clustered designs. For example, one
can have two sets of two cores. Each core has an L0 and L1 cache. There are
two L2 controllers where each set accesses only one of the L2 controllers.
|
|
A cluster over here means a set of controllers that can be accessed only by a
certain set of cores. For example, consider a two level hierarchy. Assume
there are 4 L1 controllers (private) and 2 L2 controllers. We can have two
different hierarchies here:
a. the address space is partitioned between the two L2 controllers. Each L1
controller accesses both the L2 controllers. In this case, each L1 controller
is a cluster initself.
b. both the L2 controllers can cache any address. An L1 controller has access
to only one of the L2 controllers. In this case, each L2 controller
along with the L1 controllers that access it, form a cluster.
This patch allows for each controller to have a cluster ID, which is 0 by
default. By setting the cluster ID properly, one can instantiate hierarchies
with clusters. Note that the coherence protocol might have to be changed as
well.
|
|
The patch started of with removing the global variables from the profiler for
profiling the miss latency of requests made to the cache. The corrresponding
histograms have been moved to the Sequencer. These are combined together when
the histograms are printed. Separate histograms are now maintained for
tracking latency of all requests together, of hits only and of misses only.
A particular set of histograms used to use the type GenericMachineType defined
in one of the protocol files. This patch removes this type. Now, everything
that relied on this type would use MachineType instead. To do this, SLICC has
been changed so that multiple machine types can be declared by a controller
in its preamble.
|
|
In RubySlicc_ComponentMapping.hh, certain '#define's have been used for
mapping MachineType to GenericMachineType. These '#define's are being
eliminated and the code will now be generated by SLICC instead. Also
are being eliminated some of the unused functions from
RubySlicc_ComponentMapping.sm.
|
|
Removed the last level cache support and MOESI_hammer's dependency on it.
Replaces the LLC support with the more generic MachineType count.
|
|
|
|
Added feature to CacheMemory to return the number of last level caches.
This count is need for broadcast protocols such as MOESI_hammer.
|
|
|
|
This changeset contains a lot of different changes that are too
mingled to separate. They are:
1. Added MOESI_CMP_directory
I made the changes necessary to bring back MOESI_CMP_directory,
including adding a DMA controller. I got rid of MOESI_CMP_directory_m
and made MOESI_CMP_directory use a memory controller. Added a new
configuration for two level protocols in general, and
MOESI_CMP_directory in particular.
2. DMA Sequencer uses a generic SequencerMsg
I will eventually make the cache Sequencer use this type as well. It
doesn't contain an offset field, just a physical address and a length.
MI_example has been updated to deal with this.
3. Parameterized Controllers
SLICC controllers can now take custom parameters to use for mapping,
latencies, etc. Currently, only int parameters are supported.
|
|
This was done with an automated process, so there could be things that were
done in this tree in the past that didn't make it. One known regression
is that atomic memory operations do not seem to work properly anymore.
|
|
We eventually plan to replace the m5 cache hierarchy with the GEMS
hierarchy, but for now we will make both live alongside eachother.
|