summaryrefslogtreecommitdiff
path: root/src/mem/protocol/RubySlicc_Defines.sm
AgeCommit message (Collapse)Author
2019-03-20invisispec-1.0 sourceIru Cai
2015-09-16ruby: message buffer, timer table: significant changesNilay Vaish
This patch changes MessageBuffer and TimerTable, two structures used for buffering messages by components in ruby. These structures would no longer maintain pointers to clock objects. Functions in these structures have been changed to take as input current time in Tick. Similarly, these structures will not operate on Cycle valued latencies for different operations. The corresponding functions would need to be provided with these latencies by components invoking the relevant functions. These latencies should also be in Ticks. I felt the need for these changes while trying to speed up ruby. The ultimate aim is to eliminate Consumer class and replace it with an EventManager object in the MessageBuffer and TimerTable classes. This object would be used for scheduling events. The event itself would contain information on the object and function to be invoked. In hindsight, it seems I should have done this while I was moving away from use of a single global clock in the memory system. That change led to introduction of clock objects that replaced the global clock object. It never crossed my mind that having clock object pointers is not a good design. And now I really don't like the fact that we have separate consumer, receiver and sender pointers in message buffers.
2015-08-14ruby: replace Address by AddrNilay Vaish
This patch eliminates the type Address defined by the ruby memory system. This memory system would now use the type Addr that is in use by the rest of the system.
2015-08-14ruby: Expose MessageBuffers as SimObjectsJoel Hestness
Expose MessageBuffers from SLICC controllers as SimObjects that can be manipulated in Python. This patch has numerous benefits: 1) First and foremost, it exposes MessageBuffers as SimObjects that can be manipulated in Python code. This allows parameters to be set and checked in Python code to avoid obfuscating parameters within protocol files. Further, now as SimObjects, MessageBuffer parameters are printed to config output files as a way to track parameters across simulations (e.g. buffer sizes) 2) Cleans up special-case code for responseFromMemory buffers, and aligns their instantiation and use with mandatoryQueue buffers. These two special buffers are the only MessageBuffers that are exposed to components outside of SLICC controllers, and they're both slave ends of these buffers. They should be exposed outside of SLICC in the same way, and this patch does it. 3) Distinguishes buffer-specific parameters from buffer-to-network parameters. Specifically, buffer size, randomization, ordering, recycle latency, and ports are all specific to a MessageBuffer, while the virtual network ID and type are intrinsics of how the buffer is connected to network ports. The former are specified in the Python object, while the latter are specified in the controller *.sm files. Unlike buffer-specific parameters, which may need to change depending on the simulated system structure, buffer-to-network parameters can be specified statically for most or all different simulated systems.
2014-11-06ruby: interface with classic memory controllerNilay Vaish
This patch is the final in the series. The whole series and this patch in particular were written with the aim of interfacing ruby's directory controller with the memory controller in the classic memory system. This is being done since ruby's memory controller has not being kept up to date with the changes going on in DRAMs. Classic's memory controller is more up to date and supports multiple different types of DRAM. This also brings classic and ruby ever more close. The patch also changes ruby's memory controller to expose the same interface.
2014-01-04ruby: add a three level MESI protocol.Nilay Vaish
The first two levels (L0, L1) are private to the core, the third level (L2)is possibly shared. The protocol supports clustered designs. For example, one can have two sets of two cores. Each core has an L0 and L1 cache. There are two L2 controllers where each set accesses only one of the L2 controllers.
2014-01-04ruby: add support for clustersNilay Vaish
A cluster over here means a set of controllers that can be accessed only by a certain set of cores. For example, consider a two level hierarchy. Assume there are 4 L1 controllers (private) and 2 L2 controllers. We can have two different hierarchies here: a. the address space is partitioned between the two L2 controllers. Each L1 controller accesses both the L2 controllers. In this case, each L1 controller is a cluster initself. b. both the L2 controllers can cache any address. An L1 controller has access to only one of the L2 controllers. In this case, each L2 controller along with the L1 controllers that access it, form a cluster. This patch allows for each controller to have a cluster ID, which is 0 by default. By setting the cluster ID properly, one can instantiate hierarchies with clusters. Note that the coherence protocol might have to be changed as well.
2012-07-12Ruby: remove some unused stuff from SLICC filesNilay Vaish
2009-05-11ruby: Import ruby and slicc from GEMSNathan Binkert
We eventually plan to replace the m5 cache hierarchy with the GEMS hierarchy, but for now we will make both live alongside eachother.