summaryrefslogtreecommitdiff
path: root/src/mem/ruby/structures/CacheMemory.hh
AgeCommit message (Collapse)Author
2016-01-19gpu-compute: AMD's baseline GPU modelTony Gutierrez
2015-10-12misc: Remove redundant compiler-specific definesAndreas Hansson
This patch moves away from using M5_ATTR_OVERRIDE and the m5::hashmap (and similar) abstractions, as these are no longer needed with gcc 4.7 and clang 3.1 as minimum compiler versions.
2015-09-05ruby: call setMRU from L1 controllers, not from sequencerNilay Vaish
Currently the sequencer calls the function setMRU that updates the replacement policy structures with the first level caches. While functionally this is correct, the problem is that this requires calling findTagInSet() which is an expensive function. This patch removes the calls to setMRU from the sequencer. All controllers should now update the replacement policy on their own. The set and the way index for a given cache entry can be found within the AbstractCacheEntry structure. Use these indicies to update the replacement policy structures.
2015-08-29ruby: eliminate type uint64 and int64Nilay Vaish
These types are being replaced with uint64_t and int64_t.
2015-08-27ruby: handle llsc accesses through CacheEntry, not CacheMemoryNilay Vaish
The sequencer takes care of llsc accesses by calling upon functions from the CacheMemory. This is unnecessary once the required CacheEntry object is available. Thus some of the calls to findTagInSet() are avoided.
2015-08-19ruby: reverts to changeset: bf82f1f7b040Nilay Vaish
2015-08-14ruby: cache memory: drop {try,test}CacheAccess functionsNilay Vaish
2015-08-14ruby: call setMRU from L1 controllers, not from sequencerNilay Vaish
Currently the sequencer calls the function setMRU that updates the replacement policy structures with the first level caches. While functionally this is correct, the problem is that this requires calling findTagInSet() which is an expensive function. This patch removes the calls to setMRU from the sequencer. All controllers should now update the replacement policy on their own. The set and the way index for a given cache entry can be found within the AbstractCacheEntry structure. Use these indicies to update the replacement policy structures.
2015-08-14ruby: eliminate type uint64 and int64Nilay Vaish
These types are being replaced with uint64_t and int64_t.
2015-08-14ruby: handle llsc accesses through CacheEntry, not CacheMemoryNilay Vaish
The sequencer takes care of llsc accesses by calling upon functions from the CacheMemory. This is unnecessary once the required CacheEntry object is available. Thus some of the calls to findTagInSet() are avoided.
2015-08-14ruby: replace Address by AddrNilay Vaish
This patch eliminates the type Address defined by the ruby memory system. This memory system would now use the type Addr that is in use by the rest of the system.
2015-08-14ruby: Remove the RubyCache/CacheMemory latencyJoel Hestness
The RubyCache (CacheMemory) latency parameter is only used for top-level caches instantiated for Ruby coherence protocols. However, the top-level cache hit latency is assessed by the Sequencer as accesses flow through to the cache hierarchy. Further, protocol state machines should be enforcing these cache hit latencies, but RubyCaches do not expose their latency to any existng state machines through the SLICC/C++ interface. Thus, the RubyCache latency parameter is superfluous for all caches. This is confusing for users. As a step toward pushing L0/L1 cache hit latency into the top-level cache controllers, move their latencies out of the RubyCache declarations and over to their Sequencers. Eventually, these Sequencer parameters should be exposed as parameters to the top-level cache controllers, which should assess the latency. NOTE: Assessing these latencies in the cache controllers will require modifying each to eliminate instantaneous Ruby hit callbacks in transitions that finish accesses, which is likely a large undertaking.
2015-07-20ruby: expose access permission to replacement policiesDavid Hashe
This patch adds support that allows the replacement policy to identify each cache block's access permission. This information can be useful when making replacement decisions.
2015-07-20ruby: fix deadlock bug in banked array resource checksDavid Hashe
The Ruby banked array resource checks (initiated from SLICC) did a check and allocate at the same time. If a transition needs more than one resource, then it might check/allocate resource #1, then fail to get resource #2. Another transition might then try to get the same resources, but in reverse order. Deadlock. This patch separates resource checking and resource reservation into two steps to avoid deadlock.
2015-07-20ruby: allocate a block in CacheMemory without updating LRU stateDavid Hashe
2015-07-20ruby: speed up function used for cache walksDavid Hashe
This patch adds a few helpful functions that allow .sm files to directly invalidate all cache blocks using a trigger queue rather than rely on each individual cache block to be invalidated via requests from the mandatory queue.
2015-07-20ruby: initialize replacement policies with their own simobjsDavid Hashe
this is in preparation for other replacement policies that take additional parameters.
2015-07-20ruby: give access to cache tag/data latencies from SLICCDavid Hashe
This patch exposes the tag and data array latencies to the SLICC state machines so that it can be used to determine the correct enqueue latency for response messages.
2014-10-11ruby: structures: coorect #ifndef macros in header filesNilay Vaish
2014-09-01ruby: remove typedef of Index as int64Nilay Vaish
The Index type defined as typedef int64 does not really provide any help since in most places we use primitive types instead of Index. Also, the name Index is very generic that it does not merit being used as a typename.
2014-09-01ruby: move files from ruby/system to ruby/structuresNilay Vaish
The directory ruby/system is crowded and unorganized. Hence, the files the hold actual physical structures, are being moved to the directory ruby/structures. This includes Cache Memory, Directory Memory, Memory Controller, Wire Buffer, TBE Table, Perfect Cache Memory, Timer Table, Bank Array. The directory ruby/systems has the glue code that holds these structures together. --HG-- rename : src/mem/ruby/system/MachineID.hh => src/mem/ruby/common/MachineID.hh rename : src/mem/ruby/buffers/MessageBuffer.cc => src/mem/ruby/network/MessageBuffer.cc rename : src/mem/ruby/buffers/MessageBuffer.hh => src/mem/ruby/network/MessageBuffer.hh rename : src/mem/ruby/buffers/MessageBufferNode.cc => src/mem/ruby/network/MessageBufferNode.cc rename : src/mem/ruby/buffers/MessageBufferNode.hh => src/mem/ruby/network/MessageBufferNode.hh rename : src/mem/ruby/system/AbstractReplacementPolicy.hh => src/mem/ruby/structures/AbstractReplacementPolicy.hh rename : src/mem/ruby/system/BankedArray.cc => src/mem/ruby/structures/BankedArray.cc rename : src/mem/ruby/system/BankedArray.hh => src/mem/ruby/structures/BankedArray.hh rename : src/mem/ruby/system/Cache.py => src/mem/ruby/structures/Cache.py rename : src/mem/ruby/system/CacheMemory.cc => src/mem/ruby/structures/CacheMemory.cc rename : src/mem/ruby/system/CacheMemory.hh => src/mem/ruby/structures/CacheMemory.hh rename : src/mem/ruby/system/DirectoryMemory.cc => src/mem/ruby/structures/DirectoryMemory.cc rename : src/mem/ruby/system/DirectoryMemory.hh => src/mem/ruby/structures/DirectoryMemory.hh rename : src/mem/ruby/system/DirectoryMemory.py => src/mem/ruby/structures/DirectoryMemory.py rename : src/mem/ruby/system/LRUPolicy.hh => src/mem/ruby/structures/LRUPolicy.hh rename : src/mem/ruby/system/MemoryControl.cc => src/mem/ruby/structures/MemoryControl.cc rename : src/mem/ruby/system/MemoryControl.hh => src/mem/ruby/structures/MemoryControl.hh rename : src/mem/ruby/system/MemoryControl.py => src/mem/ruby/structures/MemoryControl.py rename : src/mem/ruby/system/MemoryNode.cc => src/mem/ruby/structures/MemoryNode.cc rename : src/mem/ruby/system/MemoryNode.hh => src/mem/ruby/structures/MemoryNode.hh rename : src/mem/ruby/system/MemoryVector.hh => src/mem/ruby/structures/MemoryVector.hh rename : src/mem/ruby/system/PerfectCacheMemory.hh => src/mem/ruby/structures/PerfectCacheMemory.hh rename : src/mem/ruby/system/PersistentTable.cc => src/mem/ruby/structures/PersistentTable.cc rename : src/mem/ruby/system/PersistentTable.hh => src/mem/ruby/structures/PersistentTable.hh rename : src/mem/ruby/system/PseudoLRUPolicy.hh => src/mem/ruby/structures/PseudoLRUPolicy.hh rename : src/mem/ruby/system/RubyMemoryControl.cc => src/mem/ruby/structures/RubyMemoryControl.cc rename : src/mem/ruby/system/RubyMemoryControl.hh => src/mem/ruby/structures/RubyMemoryControl.hh rename : src/mem/ruby/system/RubyMemoryControl.py => src/mem/ruby/structures/RubyMemoryControl.py rename : src/mem/ruby/system/SparseMemory.cc => src/mem/ruby/structures/SparseMemory.cc rename : src/mem/ruby/system/SparseMemory.hh => src/mem/ruby/structures/SparseMemory.hh rename : src/mem/ruby/system/TBETable.hh => src/mem/ruby/structures/TBETable.hh rename : src/mem/ruby/system/TimerTable.cc => src/mem/ruby/structures/TimerTable.cc rename : src/mem/ruby/system/TimerTable.hh => src/mem/ruby/structures/TimerTable.hh rename : src/mem/ruby/system/WireBuffer.cc => src/mem/ruby/structures/WireBuffer.cc rename : src/mem/ruby/system/WireBuffer.hh => src/mem/ruby/structures/WireBuffer.hh rename : src/mem/ruby/system/WireBuffer.py => src/mem/ruby/structures/WireBuffer.py rename : src/mem/ruby/recorder/CacheRecorder.cc => src/mem/ruby/system/CacheRecorder.cc rename : src/mem/ruby/recorder/CacheRecorder.hh => src/mem/ruby/system/CacheRecorder.hh