summaryrefslogtreecommitdiff
path: root/src/mem/ruby/structures
AgeCommit message (Collapse)Author
2015-08-14ruby: cache memory: drop {try,test}CacheAccess functionsNilay Vaish
2015-08-14ruby: call setMRU from L1 controllers, not from sequencerNilay Vaish
Currently the sequencer calls the function setMRU that updates the replacement policy structures with the first level caches. While functionally this is correct, the problem is that this requires calling findTagInSet() which is an expensive function. This patch removes the calls to setMRU from the sequencer. All controllers should now update the replacement policy on their own. The set and the way index for a given cache entry can be found within the AbstractCacheEntry structure. Use these indicies to update the replacement policy structures.
2015-08-14ruby: adds set and way indices to AbstractCacheEntryNilay Vaish
2015-08-14ruby: eliminate type uint64 and int64Nilay Vaish
These types are being replaced with uint64_t and int64_t.
2015-08-14ruby: slicc: use default argument valueNilay Vaish
Before this patch, while one could declare / define a function with default argument values, but the actual function call would require one to specify all the arguments. This patch changes the check for function arguments. Now a function call needs to specify arguments that are at least as much as those with default values and at most the total number of arguments taken as input by the function.
2015-08-14ruby: handle llsc accesses through CacheEntry, not CacheMemoryNilay Vaish
The sequencer takes care of llsc accesses by calling upon functions from the CacheMemory. This is unnecessary once the required CacheEntry object is available. Thus some of the calls to findTagInSet() are avoided.
2015-08-14ruby: replace Address by AddrNilay Vaish
This patch eliminates the type Address defined by the ruby memory system. This memory system would now use the type Addr that is in use by the rest of the system.
2015-08-14ruby: Change PerfectCacheMemory::lookup to return pointerJoel Hestness
CacheMemory and DirectoryMemory lookup functions return pointers to entries stored in the memory. Bring PerfectCacheMemory in line with this convention, and clean up SLICC code generation that was in place solely to handle references like that which was returned by PerfectCacheMemory::lookup.
2015-08-14ruby: Remove the RubyCache/CacheMemory latencyJoel Hestness
The RubyCache (CacheMemory) latency parameter is only used for top-level caches instantiated for Ruby coherence protocols. However, the top-level cache hit latency is assessed by the Sequencer as accesses flow through to the cache hierarchy. Further, protocol state machines should be enforcing these cache hit latencies, but RubyCaches do not expose their latency to any existng state machines through the SLICC/C++ interface. Thus, the RubyCache latency parameter is superfluous for all caches. This is confusing for users. As a step toward pushing L0/L1 cache hit latency into the top-level cache controllers, move their latencies out of the RubyCache declarations and over to their Sequencers. Eventually, these Sequencer parameters should be exposed as parameters to the top-level cache controllers, which should assess the latency. NOTE: Assessing these latencies in the cache controllers will require modifying each to eliminate instantaneous Ruby hit callbacks in transitions that finish accesses, which is likely a large undertaking.
2015-07-20ruby: expose access permission to replacement policiesDavid Hashe
This patch adds support that allows the replacement policy to identify each cache block's access permission. This information can be useful when making replacement decisions.
2015-07-20ruby: fix deadlock bug in banked array resource checksDavid Hashe
The Ruby banked array resource checks (initiated from SLICC) did a check and allocate at the same time. If a transition needs more than one resource, then it might check/allocate resource #1, then fail to get resource #2. Another transition might then try to get the same resources, but in reverse order. Deadlock. This patch separates resource checking and resource reservation into two steps to avoid deadlock.
2015-07-20ruby: allocate a block in CacheMemory without updating LRU stateDavid Hashe
2015-07-20ruby: speed up function used for cache walksDavid Hashe
This patch adds a few helpful functions that allow .sm files to directly invalidate all cache blocks using a trigger queue rather than rely on each individual cache block to be invalidated via requests from the mandatory queue.
2015-07-20ruby: initialize replacement policies with their own simobjsDavid Hashe
this is in preparation for other replacement policies that take additional parameters.
2015-07-20ruby: give access to cache tag/data latencies from SLICCDavid Hashe
This patch exposes the tag and data array latencies to the SLICC state machines so that it can be used to determine the correct enqueue latency for response messages.
2015-07-10ruby: replace global g_abs_controls with per-RubySystem varBrandon Potter
This is another step in the process of removing global variables from Ruby to enable multiple RubySystem instances in a single simulation. The list of abstract controllers is per-RubySystem and should be represented that way, rather than as a global. Since this is the last remaining Ruby global variable, the src/mem/ruby/Common/Global.* files are also removed.
2015-07-10ruby: replace global g_system_ptr with per-object pointersBrandon Potter
This is another step in the process of removing global variables from Ruby to enable multiple RubySystem instances in a single simulation. With possibly multiple RubySystem objects, we can no longer use a global variable to find "the" RubySystem object. Instead, each Ruby component has to carry a pointer to the RubySystem object to which it belongs.
2015-07-10ruby: remove extra whitespace and correct misspelled wordsBrandon Potter
2015-07-07sim: Refactor and simplify the drain APIAndreas Sandberg
The drain() call currently passes around a DrainManager pointer, which is now completely pointless since there is only ever one global DrainManager in the system. It also contains vestiges from the time when SimObjects had to keep track of their child objects that needed draining. This changeset moves all of the DrainState handling to the Drainable base class and changes the drain() and drainResume() calls to reflect this. Particularly, the drain() call has been updated to take no parameters (the DrainManager argument isn't needed) and return a DrainState instead of an unsigned integer (there is no point returning anything other than 0 or 1 any more). Drainable objects should return either DrainState::Draining (equivalent to returning 1 in the old system) if they need more time to drain or DrainState::Drained (equivalent to returning 0 in the old system) if they are already in a consistent state. Returning DrainState::Running is considered an error. Drain done signalling is now done through the signalDrainDone() method in the Drainable class instead of using the DrainManager directly. The new call checks if the state of the object is DrainState::Draining before notifying the drain manager. This means that it is safe to call signalDrainDone() without first checking if the simulator has requested draining. The intention here is to reduce the code needed to implement draining in simple objects.
2015-07-04ruby: drop NetworkMessage classNilay Vaish
This patch drops the NetworkMessage class. The relevant data members and functions have been moved to the Message class, which was the parent of NetworkMessage.
2015-07-04ruby: remove message buffer nodeNilay Vaish
This structure's only purpose was to provide a comparison function for ordering messages in the MessageBuffer. The comparison function is now being moved to the Message class itself. So we no longer require this structure.
2015-05-26ruby: Deprecation warning for RubyMemoryControlAndreas Hansson
A step towards removing RubyMemoryControl and shift users to DRAMCtrl. The latter is faster, more representative, very versatile, and is integrated with power models.
2015-03-02mem: Split port retry for all different packet classesAndreas Hansson
This patch fixes a long-standing isue with the port flow control. Before this patch the retry mechanism was shared between all different packet classes. As a result, a snoop response could get stuck behind a request waiting for a retry, even if the send/recv functions were split. This caused message-dependent deadlocks in stress-test scenarios. The patch splits the retry into one per packet (message) class. Thus, sendTimingReq has a corresponding recvReqRetry, sendTimingResp has recvRespRetry etc. Most of the changes to the code involve simply clarifying what type of request a specific object was accepting. The biggest change in functionality is in the cache downstream packet queue, facing the memory. This queue was shared by requests and snoop responses, and it is now split into two queues, each with their own flow control, but the same physical MasterPort. These changes fixes the previously seen deadlocks.
2014-11-06ruby: interface with classic memory controllerNilay Vaish
This patch is the final in the series. The whole series and this patch in particular were written with the aim of interfacing ruby's directory controller with the memory controller in the classic memory system. This is being done since ruby's memory controller has not being kept up to date with the changes going on in DRAMs. Classic's memory controller is more up to date and supports multiple different types of DRAM. This also brings classic and ruby ever more close. The patch also changes ruby's memory controller to expose the same interface.
2014-11-06ruby: coherence protocols: remove data block from dirctory entryNilay Vaish
This patch removes the data block present in the directory entry structure of each protocol in gem5's mainline. Firstly, this is required for moving towards common set of memory controllers for classic and ruby memory systems. Secondly, the data block was being misused in several places. It was being used for having free access to the physical memory instead of calling on the memory controller. From now on, the directory controller will not have a direct visibility into the physical memory. The Memory Vector object now resides in the Memory Controller class. This also means that some significant changes are being made to the functional accesses in ruby.
2014-11-06ruby: remove sparse memory.Nilay Vaish
In my opinion, it creates needless complications in rest of the code. Also, this structure hinders the move towards common set of code for physical memory controllers.
2014-10-16mem: Dynamically determine page bytes in memory componentsAndreas Hansson
This patch takes a step towards an ISA-agnostic memory system by enabling the components to establish the page size after instantiation. The swap operation in the memory is now also allowing any granularity to avoid depending on the IntReg of the ISA.
2014-10-11ruby: structures: coorect #ifndef macros in header filesNilay Vaish
2014-09-03base: Use the global Mersenne twister throughoutAndreas Hansson
This patch tidies up random number generation to ensure that it is done consistently throughout the code base. In essence this involves a clean-up of Ruby, and some code simplifications in the traffic generator. As part of this patch a bunch of skewed distributions (off-by-one etc) have been fixed. Note that a single global random number generator is used, and that the object instantiation order will impact the behaviour (the sequence of numbers will be unaffected, but if module A calles random before module B then they would obviously see a different outcome). The dependency on the instantiation order is true in any case due to the execution-model of gem5, so we leave it as is. Also note that the global ranom generator is not thread safe at this point. Regressions using the memtest, TrafficGen or any Ruby tester are affected and will be updated accordingly.
2014-09-01ruby: remove typedef of Index as int64Nilay Vaish
The Index type defined as typedef int64 does not really provide any help since in most places we use primitive types instead of Index. Also, the name Index is very generic that it does not merit being used as a typename.
2014-09-01ruby: move files from ruby/system to ruby/structuresNilay Vaish
The directory ruby/system is crowded and unorganized. Hence, the files the hold actual physical structures, are being moved to the directory ruby/structures. This includes Cache Memory, Directory Memory, Memory Controller, Wire Buffer, TBE Table, Perfect Cache Memory, Timer Table, Bank Array. The directory ruby/systems has the glue code that holds these structures together. --HG-- rename : src/mem/ruby/system/MachineID.hh => src/mem/ruby/common/MachineID.hh rename : src/mem/ruby/buffers/MessageBuffer.cc => src/mem/ruby/network/MessageBuffer.cc rename : src/mem/ruby/buffers/MessageBuffer.hh => src/mem/ruby/network/MessageBuffer.hh rename : src/mem/ruby/buffers/MessageBufferNode.cc => src/mem/ruby/network/MessageBufferNode.cc rename : src/mem/ruby/buffers/MessageBufferNode.hh => src/mem/ruby/network/MessageBufferNode.hh rename : src/mem/ruby/system/AbstractReplacementPolicy.hh => src/mem/ruby/structures/AbstractReplacementPolicy.hh rename : src/mem/ruby/system/BankedArray.cc => src/mem/ruby/structures/BankedArray.cc rename : src/mem/ruby/system/BankedArray.hh => src/mem/ruby/structures/BankedArray.hh rename : src/mem/ruby/system/Cache.py => src/mem/ruby/structures/Cache.py rename : src/mem/ruby/system/CacheMemory.cc => src/mem/ruby/structures/CacheMemory.cc rename : src/mem/ruby/system/CacheMemory.hh => src/mem/ruby/structures/CacheMemory.hh rename : src/mem/ruby/system/DirectoryMemory.cc => src/mem/ruby/structures/DirectoryMemory.cc rename : src/mem/ruby/system/DirectoryMemory.hh => src/mem/ruby/structures/DirectoryMemory.hh rename : src/mem/ruby/system/DirectoryMemory.py => src/mem/ruby/structures/DirectoryMemory.py rename : src/mem/ruby/system/LRUPolicy.hh => src/mem/ruby/structures/LRUPolicy.hh rename : src/mem/ruby/system/MemoryControl.cc => src/mem/ruby/structures/MemoryControl.cc rename : src/mem/ruby/system/MemoryControl.hh => src/mem/ruby/structures/MemoryControl.hh rename : src/mem/ruby/system/MemoryControl.py => src/mem/ruby/structures/MemoryControl.py rename : src/mem/ruby/system/MemoryNode.cc => src/mem/ruby/structures/MemoryNode.cc rename : src/mem/ruby/system/MemoryNode.hh => src/mem/ruby/structures/MemoryNode.hh rename : src/mem/ruby/system/MemoryVector.hh => src/mem/ruby/structures/MemoryVector.hh rename : src/mem/ruby/system/PerfectCacheMemory.hh => src/mem/ruby/structures/PerfectCacheMemory.hh rename : src/mem/ruby/system/PersistentTable.cc => src/mem/ruby/structures/PersistentTable.cc rename : src/mem/ruby/system/PersistentTable.hh => src/mem/ruby/structures/PersistentTable.hh rename : src/mem/ruby/system/PseudoLRUPolicy.hh => src/mem/ruby/structures/PseudoLRUPolicy.hh rename : src/mem/ruby/system/RubyMemoryControl.cc => src/mem/ruby/structures/RubyMemoryControl.cc rename : src/mem/ruby/system/RubyMemoryControl.hh => src/mem/ruby/structures/RubyMemoryControl.hh rename : src/mem/ruby/system/RubyMemoryControl.py => src/mem/ruby/structures/RubyMemoryControl.py rename : src/mem/ruby/system/SparseMemory.cc => src/mem/ruby/structures/SparseMemory.cc rename : src/mem/ruby/system/SparseMemory.hh => src/mem/ruby/structures/SparseMemory.hh rename : src/mem/ruby/system/TBETable.hh => src/mem/ruby/structures/TBETable.hh rename : src/mem/ruby/system/TimerTable.cc => src/mem/ruby/structures/TimerTable.cc rename : src/mem/ruby/system/TimerTable.hh => src/mem/ruby/structures/TimerTable.hh rename : src/mem/ruby/system/WireBuffer.cc => src/mem/ruby/structures/WireBuffer.cc rename : src/mem/ruby/system/WireBuffer.hh => src/mem/ruby/structures/WireBuffer.hh rename : src/mem/ruby/system/WireBuffer.py => src/mem/ruby/structures/WireBuffer.py rename : src/mem/ruby/recorder/CacheRecorder.cc => src/mem/ruby/system/CacheRecorder.cc rename : src/mem/ruby/recorder/CacheRecorder.hh => src/mem/ruby/system/CacheRecorder.hh
2013-02-10ruby: replace Time with Cycles (final patch in the series)Nilay Vaish
This patch is as of now the final patch in the series of patches that replace Time with Cycles.This patch further replaces Time with Cycles in Sequencer, Profiler, different protocols and related entities. Though Time has not been completely removed, the places where it is in use seem benign as of now.
2013-01-17ruby: remove calls to g_system_ptr->getTime()Nilay Vaish
This patch further removes calls to g_system_ptr->getTime() where ever other clocked objects are available for providing current time.
2013-01-14Ruby: remove reference to g_system_ptr from class MessageNilay Vaish
This patch was initiated so as to remove reference to g_system_ptr, the pointer to Ruby System that is used for getting the current time. That simple change actual requires changing a lot many things in slicc and garnet. All these changes are related to how time is handled. In most of the places, g_system_ptr has been replaced by another clock object. The changes have been done under the assumption that all the components in the memory system are on the same clock frequency, but the actual clocks might be distributed.
2012-12-11ruby: add a prefetcherNilay Vaish
This patch adds a prefetcher for the ruby memory system. The prefetcher is based on a prefetcher implemented by others (well, I don't know who wrote the original). The prefetcher does stride-based prefetching, both unit and non-unit. It obseves the misses in the cache and trains on these. After the training period is over, the prefetcher starts issuing prefetch requests to the controller.