Age | Commit message (Collapse) | Author |
|
The directory ruby/system is crowded and unorganized. Hence, the files the
hold actual physical structures, are being moved to the directory
ruby/structures. This includes Cache Memory, Directory Memory,
Memory Controller, Wire Buffer, TBE Table, Perfect Cache Memory, Timer Table,
Bank Array.
The directory ruby/systems has the glue code that holds these structures
together.
--HG--
rename : src/mem/ruby/system/MachineID.hh => src/mem/ruby/common/MachineID.hh
rename : src/mem/ruby/buffers/MessageBuffer.cc => src/mem/ruby/network/MessageBuffer.cc
rename : src/mem/ruby/buffers/MessageBuffer.hh => src/mem/ruby/network/MessageBuffer.hh
rename : src/mem/ruby/buffers/MessageBufferNode.cc => src/mem/ruby/network/MessageBufferNode.cc
rename : src/mem/ruby/buffers/MessageBufferNode.hh => src/mem/ruby/network/MessageBufferNode.hh
rename : src/mem/ruby/system/AbstractReplacementPolicy.hh => src/mem/ruby/structures/AbstractReplacementPolicy.hh
rename : src/mem/ruby/system/BankedArray.cc => src/mem/ruby/structures/BankedArray.cc
rename : src/mem/ruby/system/BankedArray.hh => src/mem/ruby/structures/BankedArray.hh
rename : src/mem/ruby/system/Cache.py => src/mem/ruby/structures/Cache.py
rename : src/mem/ruby/system/CacheMemory.cc => src/mem/ruby/structures/CacheMemory.cc
rename : src/mem/ruby/system/CacheMemory.hh => src/mem/ruby/structures/CacheMemory.hh
rename : src/mem/ruby/system/DirectoryMemory.cc => src/mem/ruby/structures/DirectoryMemory.cc
rename : src/mem/ruby/system/DirectoryMemory.hh => src/mem/ruby/structures/DirectoryMemory.hh
rename : src/mem/ruby/system/DirectoryMemory.py => src/mem/ruby/structures/DirectoryMemory.py
rename : src/mem/ruby/system/LRUPolicy.hh => src/mem/ruby/structures/LRUPolicy.hh
rename : src/mem/ruby/system/MemoryControl.cc => src/mem/ruby/structures/MemoryControl.cc
rename : src/mem/ruby/system/MemoryControl.hh => src/mem/ruby/structures/MemoryControl.hh
rename : src/mem/ruby/system/MemoryControl.py => src/mem/ruby/structures/MemoryControl.py
rename : src/mem/ruby/system/MemoryNode.cc => src/mem/ruby/structures/MemoryNode.cc
rename : src/mem/ruby/system/MemoryNode.hh => src/mem/ruby/structures/MemoryNode.hh
rename : src/mem/ruby/system/MemoryVector.hh => src/mem/ruby/structures/MemoryVector.hh
rename : src/mem/ruby/system/PerfectCacheMemory.hh => src/mem/ruby/structures/PerfectCacheMemory.hh
rename : src/mem/ruby/system/PersistentTable.cc => src/mem/ruby/structures/PersistentTable.cc
rename : src/mem/ruby/system/PersistentTable.hh => src/mem/ruby/structures/PersistentTable.hh
rename : src/mem/ruby/system/PseudoLRUPolicy.hh => src/mem/ruby/structures/PseudoLRUPolicy.hh
rename : src/mem/ruby/system/RubyMemoryControl.cc => src/mem/ruby/structures/RubyMemoryControl.cc
rename : src/mem/ruby/system/RubyMemoryControl.hh => src/mem/ruby/structures/RubyMemoryControl.hh
rename : src/mem/ruby/system/RubyMemoryControl.py => src/mem/ruby/structures/RubyMemoryControl.py
rename : src/mem/ruby/system/SparseMemory.cc => src/mem/ruby/structures/SparseMemory.cc
rename : src/mem/ruby/system/SparseMemory.hh => src/mem/ruby/structures/SparseMemory.hh
rename : src/mem/ruby/system/TBETable.hh => src/mem/ruby/structures/TBETable.hh
rename : src/mem/ruby/system/TimerTable.cc => src/mem/ruby/structures/TimerTable.cc
rename : src/mem/ruby/system/TimerTable.hh => src/mem/ruby/structures/TimerTable.hh
rename : src/mem/ruby/system/WireBuffer.cc => src/mem/ruby/structures/WireBuffer.cc
rename : src/mem/ruby/system/WireBuffer.hh => src/mem/ruby/structures/WireBuffer.hh
rename : src/mem/ruby/system/WireBuffer.py => src/mem/ruby/structures/WireBuffer.py
rename : src/mem/ruby/recorder/CacheRecorder.cc => src/mem/ruby/system/CacheRecorder.cc
rename : src/mem/ruby/recorder/CacheRecorder.hh => src/mem/ruby/system/CacheRecorder.hh
|
|
|
|
This patch changes the way cache statistics are collected in ruby.
As of now, there is separate entity called CacheProfiler which holds
statistical variables for caches. The CacheMemory class defines different
functions for accessing the CacheProfiler. These functions are then invoked
in the .sm files. I find this approach opaque and prone to error. Secondly,
we probably should not be paying the cost of a function call for recording
statistics.
Instead, this patch allows for accessing statistical variables in the
.sm files. The collection would become transparent. Secondly, it would happen
in place, so no function calls. The patch also removes the CacheProfiler class.
--HG--
rename : src/mem/slicc/ast/InfixOperatorExprAST.py => src/mem/slicc/ast/OperatorExprAST.py
|
|
This patch enables warnings for missing declarations. To avoid issues
with SWIG-generated code, the warning is only applied to non-SWIG
code.
|
|
The patch started of with replacing Time with Cycles in the Consumer class.
But to get ruby to compile, the rest of the changes had to be carried out.
Subsequent patches will further this process, till we completely replace
Time with Cycles.
|
|
This patch removes RubyEventQueue. Consumer objects now rely on RubySystem
or themselves for scheduling events.
|
|
This patch removes printConfig() functions from all structures in Ruby.
Most of the information is already part of config.ini, and where ever it
is not, it would become in due course.
|
|
This patch models a cache as separate tag and data arrays. The patch exposes
the banked array as another resource that is checked by SLICC before a
transition is allowed to execute. This is similar to how TBE entries and slots
in output ports are modeled.
|
|
Updates to Ruby to support statistics counting of cache accesses. This feature
serves multiple purposes beyond simple stats collection. It provides the
foundation for ruby to model the cache tag and data arrays as physical
resources, as well as provide the necessary input data for McPAT power
modeling.
|
|
This patch changes CacheRecorder, CacheMemory, CacheControllers
so that the contents of a cache can be recorded for checkpointing
purposes.
|
|
|
|
|
|
|
|
This function duplicates the functionality of allocate() exactly, except that it does not return
a return value. In protocols where you just want to allocate a block
but do not want that block to be your implicitly passed cache_entry, use this function.
Otherwise, SLICC will complain if you do not consume the pointer returned by allocate(),
and if you do a dummy assignment Entry foo := cache.allocate(address), the C++
compiler will complain of an unused variable. This is kind of a hack to get around
those issues, but suggestions welcome.
|
|
The goal of the patch is to do away with the CacheMsg class currently in use
in coherence protocols. In place of CacheMsg, the RubyRequest class will used.
This class is already present in slicc_interface/RubyRequest.hh. In fact,
objects of class CacheMsg are generated by copying values from a RubyRequest
object.
|
|
This patch converts CacheRequestType to RubyRequestType so that both the
protocol dependent and independent code makes use of the same request type.
|
|
This patch converts AccessModeType to RubyAccessMode so that both the
protocol dependent and independent code uses the same access mode.
|
|
The purpose of this patch is to change the way CacheMemory interfaces with
coherence protocols. Currently, whenever a cache controller (defined in the
protocol under consideration) needs to carry out any operation on a cache
block, it looks up the tag hash map and figures out whether or not the block
exists in the cache. In case it does exist, the operation is carried out
(which requires another lookup). As observed through profiling of different
protocols, multiple such lookups take place for a given cache block. It was
noted that the tag lookup takes anything from 10% to 20% of the simulation
time. In order to reduce this time, this patch is being posted.
I have to acknowledge that the many of the thoughts that went in to this
patch belong to Brad.
Changes to CacheMemory, TBETable and AbstractCacheEntry classes:
1. The lookup function belonging to CacheMemory class now returns a pointer
to a cache block entry, instead of a reference. The pointer is NULL in case
the block being looked up is not present in the cache. Similar change has
been carried out in the lookup function of the TBETable class.
2. Function for setting and getting access permission of a cache block have
been moved from CacheMemory class to AbstractCacheEntry class.
3. The allocate function in CacheMemory class now returns pointer to the
allocated cache entry.
Changes to SLICC:
1. Each action now has implicit variables - cache_entry and tbe. cache_entry,
if != NULL, must point to the cache entry for the address on which the action
is being carried out. Similarly, tbe should also point to the transaction
buffer entry of the address on which the action is being carried out.
2. If a cache entry or a transaction buffer entry is passed on as an
argument to a function, it is presumed that a pointer is being passed on.
3. The cache entry and the tbe pointers received __implicitly__ by the
actions, are passed __explicitly__ to the trigger function.
4. While performing an action, set/unset_cache_entry, set/unset_tbe are to
be used for setting / unsetting cache entry and tbe pointers respectively.
5. is_valid() and is_invalid() has been made available for testing whether
a given pointer 'is not NULL' and 'is NULL' respectively.
6. Local variables are now available, but they are assumed to be pointers
always.
7. It is now possible for an object of the derieved class to make calls to
a function defined in the interface.
8. An OOD token has been introduced in SLICC. It is same as the NULL token
used in C/C++. If you are wondering, OOD stands for Out Of Domain.
9. static_cast can now taken an optional parameter that asks for casting the
given variable to a pointer of the given type.
10. Functions can be annotated with 'return_by_pointer=yes' to return a
pointer.
11. StateMachine has two new variables, EntryType and TBEType. EntryType is
set to the type which inherits from 'AbstractCacheEntry'. There can only be
one such type in the machine. TBEType is set to the type for which 'TBE' is
used as the name.
All the protocols have been modified to conform with the new interface.
|
|
|
|
Fixed L2 cache miss profiling for the MOESI_CMP_token protocol
|
|
add a couple of helper functions to base for deleteing all pointers in
a container and outputting containers to a stream
|
|
In addition to obvious changes, this required a slight change to the slicc
grammar to allow types with :: in them. Otherwise slicc barfs on std::string
which we need for the headers that slicc generates.
|
|
|
|
Removed the last level cache support and MOESI_hammer's dependency on it.
Replaces the LLC support with the more generic MachineType count.
|
|
This patch includes the necessary changes to connect ruby objects using
the python configuration system. Mainly it consists of removing
unnecessary ruby object pointers and connecting the necessary object
pointers using the generated param objects. This patch includes the
slicc changes necessary to connect generated ruby objects together using
the python configuraiton system.
|
|
The necessary companion conversion of Ruby objects generated by SLICC
are converted to M5 SimObjects in the following patch, so this patch
alone does not compile.
Conversion of Garnet network models is also handled in a separate
patch; that code is temporarily disabled from compiling to allow
testing of interim code.
|
|
|
|
Added feature to CacheMemory to return the number of last level caches.
This count is need for broadcast protocols such as MOESI_hammer.
|
|
|
|
|
|
|
|
|
|
|
|
Caches are now responsible for their own statistic gathering. This
requires a direct callback from the protocol on misses, and so all
future protocols need to take this into account.
|
|
|
|
|
|
change: don't clear lock on failure
|
|
|
|
This was done with an automated process, so there could be things that were
done in this tree in the past that didn't make it. One known regression
is that atomic memory operations do not seem to work properly anymore.
|
|
|
|
|
|
This changeset also includes a lot of work from Derek Hower <drh5@cs.wisc.edu>
RubyMemory is now both a driver for Ruby and a port for M5. Changed
makeRequest/hitCallback interface. Brought packets (superficially)
into the sequencer. Modified tester infrastructure to be packet based.
and Ruby can be used together through the example ruby_se.py
script. SPARC parallel applications work, and the timing *seems* right
from combined M5/Ruby debug traces. To run,
% build/ALPHA_SE/m5.debug configs/example/ruby_se.py -c
tests/test-progs/hello/bin/alpha/linux/hello -n 4 -t
|
|
This basically means changing all #include statements and changing
autogenerated code so that it generates the correct paths. Because
slicc generates #includes, I had to hard code the include paths to
mem/protocol.
|
|
We eventually plan to replace the m5 cache hierarchy with the GEMS
hierarchy, but for now we will make both live alongside eachother.
|