Age | Commit message (Collapse) | Author |
|
|
|
This was somewhat tricky because the RefCnt API was somewhat odd. The
biggest confusion was that the the RefCnt object's constructor that
took a TYPE& cloned the object. I created an explicit virtual clone()
function for things that took advantage of this version of the
constructor. I was conservative and used clone() when I was in doubt
of whether or not it was necessary. I still think that there are
probably too many instances of clone(), but hopefully not too many.
I converted several instances of const MsgPtr & to a simple MsgPtr.
If the function wants to avoid the overhead of creating another
reference, then it should just use a regular pointer instead of a ref
counting ptr.
There were a couple of instances where refcounted objects were created
on the stack. This seems pretty dangerous since if you ever
accidentally make a reference to that object with a ref counting
pointer, bad things are bound to happen.
|
|
In addition to obvious changes, this required a slight change to the slicc
grammar to allow types with :: in them. Otherwise slicc barfs on std::string
which we need for the headers that slicc generates.
|
|
|
|
Cleaned up the ruby profilers by moving the memory controller profiling code
out of the main profiler object and into a separate object similar to the
current CacheProfiler. Both the CacheProfiler and MemCntrlProfiler are
specific to a particular Ruby object, CacheMemory and MemoryControl
respectively. Therefore, these profilers should not be SimObjects and
created by the python configuration system, but instead private objects. This
simplifies the creation of these profilers.
|
|
This patch includes a rather substantial change to the memory controller
profiler in order to work with the new configuration system. Most
noteably, the mem_cntrl_profiler no longer uses a string map, but instead
a vector. Eventually this support should be removed from the main
profiler and go into a separate object. Each memory controller should have
a pointer to that new mem_cntrl profile object.
|
|
The necessary companion conversion of Ruby objects generated by SLICC
are converted to M5 SimObjects in the following patch, so this patch
alone does not compile.
Conversion of Garnet network models is also handled in a separate
patch; that code is temporarily disabled from compiling to allow
testing of interim code.
|
|
|
|
This was done with an automated process, so there could be things that were
done in this tree in the past that didn't make it. One known regression
is that atomic memory operations do not seem to work properly anymore.
|
|
|
|
|
|
|
|
This basically means changing all #include statements and changing
autogenerated code so that it generates the correct paths. Because
slicc generates #includes, I had to hard code the include paths to
mem/protocol.
|
|
We eventually plan to replace the m5 cache hierarchy with the GEMS
hierarchy, but for now we will make both live alongside eachother.
|