Age | Commit message (Collapse) | Author |
|
|
|
This patch allows the ruby random tester to use ruby ports that may only
support instr or data requests. This patch is similar to a previous changeset
(8932:1b2c17565ac8) that was unfortunately broken by subsequent changesets.
This current patch implements the support in a more straight-forward way.
Since retries are now tested when running the ruby random tester, this patch
splits up the retry and drain check behavior so that RubyPort children, such
as the GPUCoalescer, can perform those operations correctly without having to
duplicate code. Finally, the patch also includes better DPRINTFs for
debugging the tester.
|
|
This patch adds explicit overrides as this is now required when using
"-Wall" with clang >= 3.5, the latter now part of the most recent
XCode. The patch consequently removes "virtual" for those methods
where "override" is added. The latter should be enough of an
indication.
As part of this patch, a few minor issues that clang >= 3.5 complains
about are also resolved (unused methods and variables).
|
|
This patch moves away from using M5_ATTR_OVERRIDE and the m5::hashmap
(and similar) abstractions, as these are no longer needed with gcc 4.7
and clang 3.1 as minimum compiler versions.
|
|
The eventual aim of this change is to pass RubySystem pointers through to
objects generated from the SLICC protocol code.
Because some of these objects need to dereference their RubySystem pointers,
they need access to the System.hh header file.
In src/mem/ruby/SConscript, the MakeInclude function creates single-line header
files in the build directory that do nothing except include the corresponding
header file from the source tree.
However, SLICC also generates a list of header files from its symbol table, and
writes it to mem/protocol/Types.hh in the build directory. This code assumes
that the header file name is the same as the class name.
The end result of this is the many of the generated slicc files try to include
RubySystem.hh, when the file they really need is System.hh. The path of least
resistence is just to rename System.hh to RubySystem.hh.
--HG--
rename : src/mem/ruby/system/System.cc => src/mem/ruby/system/RubySystem.cc
rename : src/mem/ruby/system/System.hh => src/mem/ruby/system/RubySystem.hh
|
|
This patch eliminates the type Address defined by the ruby memory system.
This memory system would now use the type Addr that is in use by the
rest of the system.
|
|
This is another step in the process of removing global variables
from Ruby to enable multiple RubySystem instances in a single simulation.
With possibly multiple RubySystem objects, we can no longer use a global
variable to find "the" RubySystem object. Instead, each Ruby component
has to carry a pointer to the RubySystem object to which it belongs.
|
|
The drain() call currently passes around a DrainManager pointer, which
is now completely pointless since there is only ever one global
DrainManager in the system. It also contains vestiges from the time
when SimObjects had to keep track of their child objects that needed
draining.
This changeset moves all of the DrainState handling to the Drainable
base class and changes the drain() and drainResume() calls to reflect
this. Particularly, the drain() call has been updated to take no
parameters (the DrainManager argument isn't needed) and return a
DrainState instead of an unsigned integer (there is no point returning
anything other than 0 or 1 any more). Drainable objects should return
either DrainState::Draining (equivalent to returning 1 in the old
system) if they need more time to drain or DrainState::Drained
(equivalent to returning 0 in the old system) if they are already in a
consistent state. Returning DrainState::Running is considered an
error.
Drain done signalling is now done through the signalDrainDone() method
in the Drainable class instead of using the DrainManager directly. The
new call checks if the state of the object is DrainState::Draining
before notifying the drain manager. This means that it is safe to call
signalDrainDone() without first checking if the simulator has
requested draining. The intention here is to reduce the code needed to
implement draining in simple objects.
|
|
Draining is currently done by traversing the SimObject graph and
calling drain()/drainResume() on the SimObjects. This is not ideal
when non-SimObjects (e.g., ports) need draining since this means that
SimObjects owning those objects need to be aware of this.
This changeset moves the responsibility for finding objects that need
draining from SimObjects and the Python-side of the simulator to the
DrainManager. The DrainManager now maintains a set of all objects that
need draining. To reduce the overhead in classes owning non-SimObjects
that need draining, objects inheriting from Drainable now
automatically register with the DrainManager. If such an object is
destroyed, it is automatically unregistered. This means that drain()
and drainResume() should never be called directly on a Drainable
object.
While implementing the new functionality, the DrainManager has now
been made thread safe. In practice, this means that it takes a lock
whenever it manipulates the set of Drainable objects since SimObjects
in different threads may create Drainable objects
dynamically. Similarly, the drain counter is now an atomic_uint, which
ensures that it is manipulated correctly when objects signal that they
are done draining.
A nice side effect of these changes is that it makes the drain state
changes stricter, which the simulation scripts can exploit to avoid
redundant drains.
|
|
Remove the assert when adding a port to the RubyPort retry list.
Instead of asserting, just ignore the added port, since it's
already on the list.
Without this patch, Ruby+detailed fails for even the simplest tests
|
|
This patch fixes a long-standing isue with the port flow
control. Before this patch the retry mechanism was shared between all
different packet classes. As a result, a snoop response could get
stuck behind a request waiting for a retry, even if the send/recv
functions were split. This caused message-dependent deadlocks in
stress-test scenarios.
The patch splits the retry into one per packet (message) class. Thus,
sendTimingReq has a corresponding recvReqRetry, sendTimingResp has
recvRespRetry etc. Most of the changes to the code involve simply
clarifying what type of request a specific object was accepting.
The biggest change in functionality is in the cache downstream packet
queue, facing the memory. This queue was shared by requests and snoop
responses, and it is now split into two queues, each with their own
flow control, but the same physical MasterPort. These changes fixes
the previously seen deadlocks.
|
|
Ruby's functional accesses are not guaranteed to succeed as of now. While
this is not a problem for the protocols that are currently in the mainline
repo, it seems that coherence protocols for gpus rely on a backing store to
supply the correct data. The aim of this patch is to make this backing store
configurable i.e. it comes into play only when a particular option:
--access-backing-store is invoked.
The backing store has been there since M5 and GEMS were integrated. The only
difference is that earlier the system used to maintain the backing store and
ruby's copy was write-only. Sometime last year, we moved to data being
supplied supplied by ruby in SE mode simulations. And now we have patches on
the reviewboard, which remove ruby's copy of memory altogether and rely
completely on the system's memory to supply data. This patch adds back a
SimpleMemory member to RubySystem. This member is used only if the option:
access-backing-store is set to true. By default, the memory would not be
accessed.
|
|
This patch makes the memory system ISA-agnostic by enabling the Ruby
Sequencer to dynamically determine if it has to do a store check. To
enable this check, the ISA is encoded as an enum, and the system
is able to provide the ISA to the Sequencer at run time.
--HG--
rename : src/arch/x86/insts/microldstop.hh => src/arch/x86/ldstflags.hh
|
|
The directory ruby/system is crowded and unorganized. Hence, the files the
hold actual physical structures, are being moved to the directory
ruby/structures. This includes Cache Memory, Directory Memory,
Memory Controller, Wire Buffer, TBE Table, Perfect Cache Memory, Timer Table,
Bank Array.
The directory ruby/systems has the glue code that holds these structures
together.
--HG--
rename : src/mem/ruby/system/MachineID.hh => src/mem/ruby/common/MachineID.hh
rename : src/mem/ruby/buffers/MessageBuffer.cc => src/mem/ruby/network/MessageBuffer.cc
rename : src/mem/ruby/buffers/MessageBuffer.hh => src/mem/ruby/network/MessageBuffer.hh
rename : src/mem/ruby/buffers/MessageBufferNode.cc => src/mem/ruby/network/MessageBufferNode.cc
rename : src/mem/ruby/buffers/MessageBufferNode.hh => src/mem/ruby/network/MessageBufferNode.hh
rename : src/mem/ruby/system/AbstractReplacementPolicy.hh => src/mem/ruby/structures/AbstractReplacementPolicy.hh
rename : src/mem/ruby/system/BankedArray.cc => src/mem/ruby/structures/BankedArray.cc
rename : src/mem/ruby/system/BankedArray.hh => src/mem/ruby/structures/BankedArray.hh
rename : src/mem/ruby/system/Cache.py => src/mem/ruby/structures/Cache.py
rename : src/mem/ruby/system/CacheMemory.cc => src/mem/ruby/structures/CacheMemory.cc
rename : src/mem/ruby/system/CacheMemory.hh => src/mem/ruby/structures/CacheMemory.hh
rename : src/mem/ruby/system/DirectoryMemory.cc => src/mem/ruby/structures/DirectoryMemory.cc
rename : src/mem/ruby/system/DirectoryMemory.hh => src/mem/ruby/structures/DirectoryMemory.hh
rename : src/mem/ruby/system/DirectoryMemory.py => src/mem/ruby/structures/DirectoryMemory.py
rename : src/mem/ruby/system/LRUPolicy.hh => src/mem/ruby/structures/LRUPolicy.hh
rename : src/mem/ruby/system/MemoryControl.cc => src/mem/ruby/structures/MemoryControl.cc
rename : src/mem/ruby/system/MemoryControl.hh => src/mem/ruby/structures/MemoryControl.hh
rename : src/mem/ruby/system/MemoryControl.py => src/mem/ruby/structures/MemoryControl.py
rename : src/mem/ruby/system/MemoryNode.cc => src/mem/ruby/structures/MemoryNode.cc
rename : src/mem/ruby/system/MemoryNode.hh => src/mem/ruby/structures/MemoryNode.hh
rename : src/mem/ruby/system/MemoryVector.hh => src/mem/ruby/structures/MemoryVector.hh
rename : src/mem/ruby/system/PerfectCacheMemory.hh => src/mem/ruby/structures/PerfectCacheMemory.hh
rename : src/mem/ruby/system/PersistentTable.cc => src/mem/ruby/structures/PersistentTable.cc
rename : src/mem/ruby/system/PersistentTable.hh => src/mem/ruby/structures/PersistentTable.hh
rename : src/mem/ruby/system/PseudoLRUPolicy.hh => src/mem/ruby/structures/PseudoLRUPolicy.hh
rename : src/mem/ruby/system/RubyMemoryControl.cc => src/mem/ruby/structures/RubyMemoryControl.cc
rename : src/mem/ruby/system/RubyMemoryControl.hh => src/mem/ruby/structures/RubyMemoryControl.hh
rename : src/mem/ruby/system/RubyMemoryControl.py => src/mem/ruby/structures/RubyMemoryControl.py
rename : src/mem/ruby/system/SparseMemory.cc => src/mem/ruby/structures/SparseMemory.cc
rename : src/mem/ruby/system/SparseMemory.hh => src/mem/ruby/structures/SparseMemory.hh
rename : src/mem/ruby/system/TBETable.hh => src/mem/ruby/structures/TBETable.hh
rename : src/mem/ruby/system/TimerTable.cc => src/mem/ruby/structures/TimerTable.cc
rename : src/mem/ruby/system/TimerTable.hh => src/mem/ruby/structures/TimerTable.hh
rename : src/mem/ruby/system/WireBuffer.cc => src/mem/ruby/structures/WireBuffer.cc
rename : src/mem/ruby/system/WireBuffer.hh => src/mem/ruby/structures/WireBuffer.hh
rename : src/mem/ruby/system/WireBuffer.py => src/mem/ruby/structures/WireBuffer.py
rename : src/mem/ruby/recorder/CacheRecorder.cc => src/mem/ruby/system/CacheRecorder.cc
rename : src/mem/ruby/recorder/CacheRecorder.hh => src/mem/ruby/system/CacheRecorder.hh
|
|
|
|
Currently, the interrupt controller in x86 is connected to the io bus
directly. Therefore the packets between the io devices and the interrupt
controller do not go through ruby. This patch changes ruby port so that
these packets arrive at the ruby port first, which then routes them to their
destination. Note that the patch does not make these packets go through the
ruby network. That would happen in a subsequent patch.
|
|
This patch simplfies the retry logic in the RubyPort, avoiding
redundant attributes, and enforcing more stringent checks on the
interactions with the normal ports. The patch also simplifies the
routing done by the RubyPort, using the port identifiers instead of a
heavy-weight sender state.
The patch also fixes a bug in the sending of responses from PIO
ports. Previously these responses bypassed the queue in the queued
port, and ignored the return value, potentially leading to response
packets being lost.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
|
|
This patch removes the notion of a peer block size and instead sets
the cache line size on the system level.
Previously the size was set per cache, and communicated through the
interconnect. There were plenty checks to ensure that everyone had the
same size specified, and these checks are now removed. Another benefit
that is not yet harnessed is that the cache line size is now known at
construction time, rather than after the port binding. Hence, the
block size can be locally stored and does not have to be queried every
time it is used.
A follow-on patch updates the configuration scripts accordingly.
|
|
This patch fixes the warnings that clang3.2svn emit due to the "-Wall"
flag. There is one case of an uninitialised value in the ARM neon ISA
description, and then a whole range of unused private fields that are
pruned.
|
|
This patch adds a predecessor field to the SenderState base class to
make the process of linking them up more uniform, and enable a
traversal of the stack without knowing the specific type of the
subclasses.
There are a number of simplifications done as part of changing the
SenderState, particularly in the RubyTest.
|
|
This patch allows ruby to have multiple clock domains. As I understand
with this patch, controllers can have different frequencies. The entire
network needs to run at a single frequency.
The idea is that with in an object, time is treated in terms of cycles.
But the messages that are passed from one entity to another should contain
the time in Ticks. As of now, this is only true for the message buffers,
but not for the links in the network. As I understand the code, all the
entities in different networks (simple, garnet-fixed, garnet-flexible) should
be clocked at the same frequency.
Another problem is that the directory controller has to operate at the same
frequency as the ruby system. This is because the memory controller does
not make use of the Message Buffer, and instead implements a buffer of its
own. So, it has no idea of the frequency at which the directory controller
is operating and uses ruby system's frequency for scheduling events.
|
|
This patch moves the draining interface from SimObject to a separate
class that can be used by any object needing draining. However,
objects not visible to the Python code (i.e., objects not deriving
from SimObject) still depend on their parents informing them when to
drain. This patch also gets rid of the CountedDrainEvent (which isn't
really an event) and replaces it with a DrainManager.
|
|
This patch adds an additional level of ports in the inheritance
hierarchy, separating out the protocol-specific and protocl-agnostic
parts. All the functionality related to the binding of ports is now
confined to use BaseMaster/BaseSlavePorts, and all the
protocol-specific parts stay in the Master/SlavePort. In the future it
will be possible to add other protocol-specific implementations.
The functions used in the binding of ports, i.e. getMaster/SlavePort
now use the base classes, and the index parameter is updated to use
the PortID typedef with the symbolic InvalidPortID as the default.
|
|
This patch moves the code for functional accesses to ruby system. This is
because the subsequent patches add support for making functional accesses
to the messages in the interconnect. Making those accesses from the ruby port
would be cumbersome.
|
|
Fix the drain functionality of the RubyPort to only call drain on child ports
during a system-wide drain process, instead of calling each time that a
ruby_hit_callback is executed.
This fixes the issue of the RubyPort ports being reawakened during the drain
simulation, possibly with work they didn't previously have to complete. If
they have new work, they may call process on the drain event that they had
not registered work for, causing an assertion failure when completing the
drain event.
Also, in RubyPort, set the drainEvent to NULL when there are no events
to be drained. If not set to NULL, the drain loop can result in stale
drainEvents used.
|
|
This patch extends the queued port interfaces with methods for
scheduling the transmission of a timing request/response. The methods
are named similar to the corresponding sendTiming(Snoop)Req/Resp,
replacing the "send" with "sched". As the queues are currently
unbounded, the methods always succeed and hence do not return a value.
This functionality was previously provided in the subclasses by
calling PacketQueue::schedSendTiming with the appropriate
parameters. With this change, there is no need to introduce these
extra methods in the subclasses, and the use of the queued interface
is more uniform and explicit.
|
|
This patch makes getAddrRanges const throughout the code base. There
is no reason why it should not be, and making it const prevents adding
any unintentional side-effects.
|
|
This patch moves send/recvTiming and send/recvTimingSnoop from the
Port base class to the MasterPort and SlavePort, and also splits them
into separate member functions for requests and responses:
send/recvTimingReq, send/recvTimingResp, and send/recvTimingSnoopReq,
send/recvTimingSnoopResp. A master port sends requests and receives
responses, and also receives snoop requests and sends snoop
responses. A slave port has the reciprocal behaviour as it receives
requests and sends responses, and sends snoop requests and receives
snoop responses.
For all MemObjects that have only master ports or slave ports (but not
both), e.g. a CPU, or a PIO device, this patch merely adds more
clarity to what kind of access is taking place. For example, a CPU
port used to call sendTiming, and will now call
sendTimingReq. Similarly, a response previously came back through
recvTiming, which is now recvTimingResp. For the modules that have
both master and slave ports, e.g. the bus, the behaviour was
previously relying on branches based on pkt->isRequest(), and this is
now replaced with a direct call to the apprioriate member function
depending on the type of access. Please note that send/recvRetry is
still shared by all the timing accessors and remains in the Port base
class for now (to maintain the current bus functionality and avoid
changing the statistics of all regressions).
The packet queue is split into a MasterPort and SlavePort version to
facilitate the use of the new timing accessors. All uses of the
PacketQueue are updated accordingly.
With this patch, the type of packet (request or response) is now well
defined for each type of access, and asserts on pkt->isRequest() and
pkt->isResponse() are now moved to the appropriate send member
functions. It is also worth noting that sendTimingSnoopReq no longer
returns a boolean, as the semantics do not alow snoop requests to be
rejected or stalled. All these assumptions are now excplicitly part of
the port interface itself.
|
|
This patch introduces port access methods that separates snoop
request/responses from normal memory request/responses. The
differentiation is made for functional, atomic and timing accesses and
builds on the introduction of master and slave ports.
Before the introduction of this patch, the packets belonging to the
different phases of the protocol (request -> [forwarded snoop request
-> snoop response]* -> response) all use the same port access
functions, even though the snoop packets flow in the opposite
direction to the normal packet. That is, a coherent master sends
normal request and receives responses, but receives snoop requests and
sends snoop responses (vice versa for the slave). These two distinct
phases now use different access functions, as described below.
Starting with the functional access, a master sends a request to a
slave through sendFunctional, and the request packet is turned into a
response before the call returns. In a system without cache coherence,
this is all that is needed from the functional interface. For the
cache-coherent scenario, a slave also sends snoop requests to coherent
masters through sendFunctionalSnoop, with responses returned within
the same packet pointer. This is currently used by the bus and caches,
and the LSQ of the O3 CPU. The send/recvFunctional and
send/recvFunctionalSnoop are moved from the Port super class to the
appropriate subclass.
Atomic accesses follow the same flow as functional accesses, with
request being sent from master to slave through sendAtomic. In the
case of cache-coherent ports, a slave can send snoop requests to a
master through sendAtomicSnoop. Just as for the functional access
methods, the atomic send and receive member functions are moved to the
appropriate subclasses.
The timing access methods are different from the functional and atomic
in that requests and responses are separated in time and
send/recvTiming are used for both directions. Hence, a master uses
sendTiming to send a request to a slave, and a slave uses sendTiming
to send a response back to a master, at a later point in time. Snoop
requests and responses travel in the opposite direction, similar to
what happens in functional and atomic accesses. With the introduction
of this patch, it is possible to determine the direction of packets in
the bus, and no longer necessary to look for both a master and a slave
port with the requested port id.
In contrast to the normal recvFunctional, recvAtomic and recvTiming
that are pure virtual functions, the recvFunctionalSnoop,
recvAtomicSnoop and recvTimingSnoop have a default implementation that
calls panic. This is to allow non-coherent master and slave ports to
not implement these functions.
|
|
This patch removes the physMemPort from the RubySequencer and instead
uses the system pointer to access the physmem. The system already
keeps track of the physmem and the valid memory address ranges, and
with this patch we merely make use of that existing functionality. The
memory is modified so that it is possible to call the access functions
(atomic and functional) without going through the port, and the memory
is allowed to be unconnected, i.e. have no ports (since Ruby does not
attach it like the conventional memory system).
|
|
This patch introduces the notion of a master and slave port in the C++
code, thus bringing the previous classification from the Python
classes into the corresponding simulation objects and memory objects.
The patch enables us to classify behaviours into the two bins and add
assumptions and enfore compliance, also simplifying the two
interfaces. As a starting point, isSnooping is confined to a master
port, and getAddrRanges to slave ports. More of these specilisations
are to come in later patches.
The getPort function is not getMasterPort and getSlavePort, and
returns a port reference rather than a pointer as NULL would never be
a valid return value. The default implementation of these two
functions is placed in MemObject, and calls fatal.
The one drawback with this specific patch is that it requires some
code duplication, e.g. QueuedPort becomes QueuedMasterPort and
QueuedSlavePort, and BusPort becomes BusMasterPort and BusSlavePort
(avoiding multiple inheritance). With the later introduction of the
port interfaces, moving the functionality outside the port itself, a
lot of the duplicated code will disappear again.
|
|
This patch decouples the queueing and the port interactions to
simplify the introduction of the master and slave ports. By separating
the queueing functionality from the port itself, it becomes much
easier to distinguish between master and slave ports, and still retain
the queueing ability for both (without code duplication).
As part of the split into a PacketQueue and a port, there is now also
a hierarchy of two port classes, QueuedPort and SimpleTimingPort. The
QueuedPort is useful for ports that want to leave the packet
transmission of outgoing packets to the queue and is used by both
master and slave ports. The SimpleTimingPort inherits from the
QueuedPort and adds the implemention of recvTiming and recvFunctional
through recvAtomic.
The PioPort and MessagePort are cleaned up as part of the changes.
--HG--
rename : src/mem/tport.cc => src/mem/packet_queue.cc
rename : src/mem/tport.hh => src/mem/packet_queue.hh
|
|
This patch renames the sendTiming member function in the RubyPort to
avoid inadvertently hiding Port::sendTiming (discovered through some
rather painful debugging). The RubyPort does, in fact, rely on the
functionality of the queued port and the implementation merely
schedules a send the next cycle. The new name for the member function
is sendNextCycle to better reflect this behaviour.
In the unlikely event that we ever shift to using C++11 the member
functions in Port should have a "final" identifier to prevent any
overriding in derived classes.
|
|
This patch moves all port creation from the getPort method to be
consistently done in the MemObject's constructor. This is possible
thanks to the Swig interface passing the length of the vector ports.
Previously there was a mix of: 1) creating the ports as members (at
object construction time) and using getPort for the name resolution,
or 2) dynamically creating the ports in the getPort call. This is now
uniform. Furthermore, objects that would not be complete without a
port have these ports as members rather than having pointers to
dynamically allocated ports.
This patch also enables an elaboration-time enumeration of all the
ports in the system which can be used to determine the masterId.
|
|
This patch makes the physMemPort of the RubyPort a PioPort rather than
an M5Port. This reflects the fact that the M5Port and PioPort have
different roles. The M5Port is really a coherent slave that is
connected to the CPUs and other coherent masters of the system,
e.g. DMA ports. The PioPort, on the other hand, is a master port that
is connected to the memory and other slaves, for example the pio
devices.
This simplifies future changes into master/slave ports and is
consistent with the port roles throughout the system.
|
|
This patch implements the functionality for forwarding invalidations and
replacements from the L1 cache of the Ruby memory system to the O3 CPU. The
implementation adds a list of ports to RubyPort. Whenever a replacement or an
invalidation is performed, the L1 cache forwards this to all the ports, which
is the LSQ in case of the O3 CPU.
|
|
This patch resurrects ruby's cache warmup capability. It essentially
makes use of all the infrastructure that was added to the controllers,
memories and the cache recorder.
|
|
|
|
This patch changes the implementation of Ruby's recvTiming() function so
that it pushes a packet in to the Sequencer instead of a RubyRequest. This
requires changes in the Sequencer's makeRequest() and issueRequest()
functions, as they also need to operate on a Packet instead of RubyRequest.
|
|
This patch rpovides functional access support in Ruby. Currently only
the M5Port of RubyPort supports functional accesses. The support for
functional through the PioPort will be added as a separate patch.
|
|
|
|
This patch removes libruby_internal.hh, libruby.hh and libruby.cc. It moves
the contents to libruby.hh to RubyRequest.hh and RubyRequest.cc files.
|
|
The packet now identifies whether static or dynamic data has been allocated and
is used by Ruby to determine whehter to copy the data pointer into the ruby
request. Subsequently, Ruby can be told not to update phys memory when
receiving packets.
|
|
|
|
|
|
In addition to obvious changes, this required a slight change to the slicc
grammar to allow types with :: in them. Otherwise slicc barfs on std::string
which we need for the headers that slicc generates.
|
|
|
|
Removed static members in RubyPort and removed the ruby request unique id.
|
|
|