Age | Commit message (Collapse) | Author |
|
With recent changes OSX clang compilation fails due to an unused variable.
|
|
Ruby's functional accesses are not guaranteed to succeed as of now. While
this is not a problem for the protocols that are currently in the mainline
repo, it seems that coherence protocols for gpus rely on a backing store to
supply the correct data. The aim of this patch is to make this backing store
configurable i.e. it comes into play only when a particular option:
--access-backing-store is invoked.
The backing store has been there since M5 and GEMS were integrated. The only
difference is that earlier the system used to maintain the backing store and
ruby's copy was write-only. Sometime last year, we moved to data being
supplied supplied by ruby in SE mode simulations. And now we have patches on
the reviewboard, which remove ruby's copy of memory altogether and rely
completely on the system's memory to supply data. This patch adds back a
SimpleMemory member to RubySystem. This member is used only if the option:
access-backing-store is set to true. By default, the memory would not be
accessed.
|
|
This patch is the final in the series. The whole series and this patch in
particular were written with the aim of interfacing ruby's directory controller
with the memory controller in the classic memory system. This is being done
since ruby's memory controller has not being kept up to date with the changes
going on in DRAMs. Classic's memory controller is more up to date and
supports multiple different types of DRAM. This also brings classic and
ruby ever more close. The patch also changes ruby's memory controller to
expose the same interface.
|
|
This function was added when I had incorrectly arrived at the conclusion
that such a function can improve the chances of a functional read succeeding.
As was later realized, this is not possible in the current setup. While the
code using this function was dropped long back, this function was not. Hence
the patch.
|
|
This patch removes the data block present in the directory entry structure
of each protocol in gem5's mainline. Firstly, this is required for moving
towards common set of memory controllers for classic and ruby memory systems.
Secondly, the data block was being misused in several places. It was being
used for having free access to the physical memory instead of calling on the
memory controller.
From now on, the directory controller will not have a direct visibility into
the physical memory. The Memory Vector object now resides in the
Memory Controller class. This also means that some significant changes are
being made to the functional accesses in ruby.
|
|
In my opinion, it creates needless complications in rest of the code.
Also, this structure hinders the move towards common set of code for
physical memory controllers.
|
|
Both ruby and the system used to maintain memory copies. With the changes
carried for programmed io accesses, only one single memory is required for
fs simulations. This patch sets the copy of memory that used to reside
with the system to null, so that no space is allocated, but address checks
can still be carried out. All the memory accesses now source and sink values
to the memory maintained by ruby.
|
|
As of now DMASequencer inherits from the RubyPort class. But the code in
RubyPort class is heavily tailored for the CPU Sequencer. There are parts of
the code that are not required at all for the DMA sequencer. Moreover, the
next patch uses the dma sequencer for carrying out memory accesses for all the
io devices. Hence, it is better to have a leaner dma sequencer.
|
|
The new location seems like a better fit. The iterator typedefs are
removed in favour of using C++11 auto.
|
|
This patch transitions the Ruby Message and its derived classes from
the ad-hoc RefCountingPtr to the c++11 shared_ptr. There are no
changes in behaviour, and the code modifications are mainly replacing
"new" with "make_shared".
The cloning of derived messages is slightly changed as they previously
relied on overriding the base-class through covariant return types.
|
|
This patch makes the memory system ISA-agnostic by enabling the Ruby
Sequencer to dynamically determine if it has to do a store check. To
enable this check, the ISA is encoded as an enum, and the system
is able to provide the ISA to the Sequencer at run time.
--HG--
rename : src/arch/x86/insts/microldstop.hh => src/arch/x86/ldstflags.hh
|
|
This patch takes a step towards an ISA-agnostic memory
system by enabling the components to establish the page size after
instantiation. The swap operation in the memory is now also allowing
any granularity to avoid depending on the IntReg of the ISA.
|
|
This patch adds some statistics to garnet that record the activity
of certain structures in the on-chip network. These statistics, in a later
patch, will be used for computing the energy consumed by the on-chip network.
|
|
|
|
Orion is being dropped from ruby. It would be replaced with DSENT
which has better models. Note that the power / energy numbers reported
after this patch has been applied are not for use.
|
|
|
|
Another bunch of issues addressed.
|
|
Add some missing initialisation, and fix a handful benign resource
leaks (including some false positives).
|
|
The changeset ad9c042dce54 made changes to the structures under the network
directory to use a map of buffers instead of vector of buffers.
The reasoning was that not all vnets that are created are used and we
needlessly allocate more buffers than required and then iterate over them
while processing network messages. But the move to map resulted in a slow
down which was pointed out by Andreas Hansson. This patch moves things
back to using vector of message buffers.
|
|
This patch tidies up random number generation to ensure that it is
done consistently throughout the code base. In essence this involves a
clean-up of Ruby, and some code simplifications in the traffic
generator.
As part of this patch a bunch of skewed distributions (off-by-one etc)
have been fixed.
Note that a single global random number generator is used, and that
the object instantiation order will impact the behaviour (the sequence
of numbers will be unaffected, but if module A calles random before
module B then they would obviously see a different outcome). The
dependency on the instantiation order is true in any case due to the
execution-model of gem5, so we leave it as is. Also note that the
global ranom generator is not thread safe at this point.
Regressions using the memtest, TrafficGen or any Ruby tester are
affected and will be updated accordingly.
|
|
This patch prunes unused values, and also unifies how the values are
defined (not using an enum for ALPHA), aligning the use of int vs Addr
etc.
The patch also removes the duplication of PageBytes/PageShift and
VMPageSize/LogVMPageSize. For all ISAs the two pairs had identical
values and the latter has been removed.
|
|
The Index type defined as typedef int64 does not really provide any help
since in most places we use primitive types instead of Index. Also, the name
Index is very generic that it does not merit being used as a typename.
|
|
This patch moves code from the wakeup() function to a operateVnet().
The aim is to improve the readiblity of the code.
|
|
This patch is the final patch in a series of patches. The aim of the series
is to make ruby more configurable than it was. More specifically, the
connections between controllers are not at all possible (unless one is ready
to make significant changes to the coherence protocol). Moreover the buffers
themselves are magically connected to the network inside the slicc code.
These connections are not part of the configuration file.
This patch makes changes so that these connections will now be made in the
python configuration files associated with the protocols. This requires
each state machine to expose the message buffers it uses for input and output.
So, the patch makes these buffers configurable members of the machines.
The patch drops the slicc code that usd to connect these buffers to the
network. Now these buffers are exposed to the python configuration system
as Master and Slave ports. In the configuration files, any master port
can be connected any slave port. The file pyobject.cc has been modified to
take care of allocating the actual message buffer. This is inline with how
other port connections work.
|
|
A later changeset changes the file src/python/swig/pyobject.cc to include
a header file that includes a header file generated at build time depending
on the PROTOCOL in use. Since NULL ISA was not specifying any protocol,
this resulted in compilation problems. Hence, the changeset.
|
|
|
|
All the implementations were doing the same things.
|
|
There is another type Time in src/base class which results in a conflict.
|
|
The directory ruby/system is crowded and unorganized. Hence, the files the
hold actual physical structures, are being moved to the directory
ruby/structures. This includes Cache Memory, Directory Memory,
Memory Controller, Wire Buffer, TBE Table, Perfect Cache Memory, Timer Table,
Bank Array.
The directory ruby/systems has the glue code that holds these structures
together.
--HG--
rename : src/mem/ruby/system/MachineID.hh => src/mem/ruby/common/MachineID.hh
rename : src/mem/ruby/buffers/MessageBuffer.cc => src/mem/ruby/network/MessageBuffer.cc
rename : src/mem/ruby/buffers/MessageBuffer.hh => src/mem/ruby/network/MessageBuffer.hh
rename : src/mem/ruby/buffers/MessageBufferNode.cc => src/mem/ruby/network/MessageBufferNode.cc
rename : src/mem/ruby/buffers/MessageBufferNode.hh => src/mem/ruby/network/MessageBufferNode.hh
rename : src/mem/ruby/system/AbstractReplacementPolicy.hh => src/mem/ruby/structures/AbstractReplacementPolicy.hh
rename : src/mem/ruby/system/BankedArray.cc => src/mem/ruby/structures/BankedArray.cc
rename : src/mem/ruby/system/BankedArray.hh => src/mem/ruby/structures/BankedArray.hh
rename : src/mem/ruby/system/Cache.py => src/mem/ruby/structures/Cache.py
rename : src/mem/ruby/system/CacheMemory.cc => src/mem/ruby/structures/CacheMemory.cc
rename : src/mem/ruby/system/CacheMemory.hh => src/mem/ruby/structures/CacheMemory.hh
rename : src/mem/ruby/system/DirectoryMemory.cc => src/mem/ruby/structures/DirectoryMemory.cc
rename : src/mem/ruby/system/DirectoryMemory.hh => src/mem/ruby/structures/DirectoryMemory.hh
rename : src/mem/ruby/system/DirectoryMemory.py => src/mem/ruby/structures/DirectoryMemory.py
rename : src/mem/ruby/system/LRUPolicy.hh => src/mem/ruby/structures/LRUPolicy.hh
rename : src/mem/ruby/system/MemoryControl.cc => src/mem/ruby/structures/MemoryControl.cc
rename : src/mem/ruby/system/MemoryControl.hh => src/mem/ruby/structures/MemoryControl.hh
rename : src/mem/ruby/system/MemoryControl.py => src/mem/ruby/structures/MemoryControl.py
rename : src/mem/ruby/system/MemoryNode.cc => src/mem/ruby/structures/MemoryNode.cc
rename : src/mem/ruby/system/MemoryNode.hh => src/mem/ruby/structures/MemoryNode.hh
rename : src/mem/ruby/system/MemoryVector.hh => src/mem/ruby/structures/MemoryVector.hh
rename : src/mem/ruby/system/PerfectCacheMemory.hh => src/mem/ruby/structures/PerfectCacheMemory.hh
rename : src/mem/ruby/system/PersistentTable.cc => src/mem/ruby/structures/PersistentTable.cc
rename : src/mem/ruby/system/PersistentTable.hh => src/mem/ruby/structures/PersistentTable.hh
rename : src/mem/ruby/system/PseudoLRUPolicy.hh => src/mem/ruby/structures/PseudoLRUPolicy.hh
rename : src/mem/ruby/system/RubyMemoryControl.cc => src/mem/ruby/structures/RubyMemoryControl.cc
rename : src/mem/ruby/system/RubyMemoryControl.hh => src/mem/ruby/structures/RubyMemoryControl.hh
rename : src/mem/ruby/system/RubyMemoryControl.py => src/mem/ruby/structures/RubyMemoryControl.py
rename : src/mem/ruby/system/SparseMemory.cc => src/mem/ruby/structures/SparseMemory.cc
rename : src/mem/ruby/system/SparseMemory.hh => src/mem/ruby/structures/SparseMemory.hh
rename : src/mem/ruby/system/TBETable.hh => src/mem/ruby/structures/TBETable.hh
rename : src/mem/ruby/system/TimerTable.cc => src/mem/ruby/structures/TimerTable.cc
rename : src/mem/ruby/system/TimerTable.hh => src/mem/ruby/structures/TimerTable.hh
rename : src/mem/ruby/system/WireBuffer.cc => src/mem/ruby/structures/WireBuffer.cc
rename : src/mem/ruby/system/WireBuffer.hh => src/mem/ruby/structures/WireBuffer.hh
rename : src/mem/ruby/system/WireBuffer.py => src/mem/ruby/structures/WireBuffer.py
rename : src/mem/ruby/recorder/CacheRecorder.cc => src/mem/ruby/system/CacheRecorder.cc
rename : src/mem/ruby/recorder/CacheRecorder.hh => src/mem/ruby/system/CacheRecorder.hh
|
|
Using '== true' in a boolean expression is totally redundant,
and using '== false' is pretty verbose (and arguably less
readable in most cases) compared to '!'.
It's somewhat of a pet peeve, perhaps, but I had some time
waiting for some tests to run and decided to clean these up.
Unfortunately, SLICC appears not to have the '!' operator,
so I had to leave the '== false' tests in the SLICC code.
|
|
The functionality of updating and returning the delay cycles would now be
performed by the dequeue() function itself.
|
|
Upon aggregating records, serialize system's cache-block size, as the
cache-block size can be different when restoring from a checkpoint. This way,
we can correctly read all records when restoring from a checkpoints, even if
the cache-block size is different.
Note, that it is only possible to restore from a checkpoint if the
desired cache-block size is smaller or equal to the cache-block size
when the checkpoint was taken; we can split one larger request into
multiple small ones, but it is not reliable to do the opposite.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
This patch moves the Ruby-related debug flags to the ruby
sub-directory, and also removes the state SConsopts that add the
no-longer-used NO_VECTOR_BOUNDS_CHECK.
|
|
Each consumer object maintains a set of tick values when the object is supposed
to wakeup and do some processing. As of now, the object accesses this set both
when scheduling a wakeup event and when the object actually wakes up. The set
is accessed during wakeup to remove the current tick value from the set. This
functionality is now being moved to the scheduling function where ticks are
removed at a later time.
|
|
This helps in configuring the network interfaces from the python script and
these objects no longer rely on the network object for the timing information.
|
|
Piobus was recently added to se scripts for ruby so that the interrupt
controller can be connected to something (required since the interrupt
controller sends address range messages). This patch removes the piobus
and instead, the pio port of ruby port will now ignore the range change
messages in se mode.
|
|
|
|
The last pop operation is now tracked as a Tick instead of in Cycles.
This helps in avoiding use of the receiver's clock during the enqueue
operation.
|
|
|
|
Couple of users observed segmentation fault when the simulator tries to
register the statistical variable m_IncompleteTimes. It seems that there
is some problem with the initialization of these variables when allocated
in the constructor.
|
|
Currently, the interrupt controller in x86 is connected to the io bus
directly. Therefore the packets between the io devices and the interrupt
controller do not go through ruby. This patch changes ruby port so that
these packets arrive at the ruby port first, which then routes them to their
destination. Note that the patch does not make these packets go through the
ruby network. That would happen in a subsequent patch.
|
|
This patch simplfies the retry logic in the RubyPort, avoiding
redundant attributes, and enforcing more stringent checks on the
interactions with the normal ports. The patch also simplifies the
routing done by the RubyPort, using the port identifiers instead of a
heavy-weight sender state.
The patch also fixes a bug in the sending of responses from PIO
ports. Previously these responses bypassed the queue in the queued
port, and ignored the return value, potentially leading to response
packets being lost.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
Code in two of the functions was exactly the same. This patch moves
this code to a new function which is called from the two functions
mentioned initially.
|
|
|
|
|
|
|
|
|
|
|
|
At several places, there are functions that take a cycle value as input
and performs some computation. Along with each such function, another
function was being defined that simply added one more cycle to input and
computed the same function. This patch removes this second copy of the
function. Places where these functions were being called have been updated
to use the original function with argument being current cycle + 1.
|
|
|