Age | Commit message (Collapse) | Author |
|
Previously the xbar used the start address to lookup the port map and
determine the right destination of an incoming packet. This change
uses the full address range to correctly determine the right master.
Change-Id: I5118712c43ae65aba64e71bf030bca5c99770bdd
Reviewed-on: https://gem5-review.googlesource.com/11117
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Maintainer: Nikos Nikoleris <nikos.nikoleris@arm.com>
|
|
Use that instead of caching built into the crossbar.
Change-Id: If5a5355a0a1a6e532b14efc88a319de4c023f8c1
Reviewed-on: https://gem5-review.googlesource.com/5243
Reviewed-by: Daniel Carvalho <odanrc@yahoo.com.br>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Maintainer: Nikos Nikoleris <nikos.nikoleris@arm.com>
|
|
We need to determined whether an address range is fully contained or
it overlaps with an address range in the address range in the mmap. As
an example, we use address range maps to associate ports to address
ranges and we determine which port we will forward the request based
on which address range contains the addresses accessed by the
request. We also need to make sure that when we add a new port to the
address range map, its address range does not overlap with any of the
existing ports.
This patch splits the function find() into two functions contains()
and intersects() to implement this distinct functionality. It also
changes the xbar and the physical memory to use the right function.
Change-Id: If3fd3f774a16b27db2df76dc04f1d61824938008
Reviewed-on: https://gem5-review.googlesource.com/11115
Reviewed-by: Daniel Carvalho <odanrc@yahoo.com.br>
Maintainer: Nikos Nikoleris <nikos.nikoleris@arm.com>
|
|
These files aren't a collection of miscellaneous stuff, they're the
definition of the Logger interface, and a few utility macros for
calling into that interface (panic, warn, etc.).
Change-Id: I84267ac3f45896a83c0ef027f8f19c5e9a5667d1
Reviewed-on: https://gem5-review.googlesource.com/6226
Reviewed-by: Brandon Potter <Brandon.Potter@amd.com>
Maintainer: Gabe Black <gabeblack@google.com>
|
|
NOTE: With this change there is a possibility for `DRAMCtrl::Rank`s
event names to not properly match the rank they were generated by. This
could occur if the public rank member is modified after the Rank's
construction. A patch would mean refactoring Rank and `DRAMCtrl`b to
privatize many of the members of Rank behind getters.
Change-Id: I7b8bd15086f4ffdfd3f40be4aeddac5e786fd78e
Signed-off-by: Sean Wilson <spwilson2@wisc.edu>
Reviewed-on: https://gem5-review.googlesource.com/3745
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Reviewed-by: Anthony Gutierrez <anthony.gutierrez@amd.com>
Reviewed-by: Nikos Nikoleris <nikos.nikoleris@arm.com>
Maintainer: Nikos Nikoleris <nikos.nikoleris@arm.com>
|
|
|
|
We want to extend the stats of objects hierarchically and thus it is necessary
to register the statistics of the base-class(es), as well. For now, these are
empty, but generic stats will be added there.
Patch originally provided by Akash Bagdia at ARM Ltd.
|
|
The drain() call currently passes around a DrainManager pointer, which
is now completely pointless since there is only ever one global
DrainManager in the system. It also contains vestiges from the time
when SimObjects had to keep track of their child objects that needed
draining.
This changeset moves all of the DrainState handling to the Drainable
base class and changes the drain() and drainResume() calls to reflect
this. Particularly, the drain() call has been updated to take no
parameters (the DrainManager argument isn't needed) and return a
DrainState instead of an unsigned integer (there is no point returning
anything other than 0 or 1 any more). Drainable objects should return
either DrainState::Draining (equivalent to returning 1 in the old
system) if they need more time to drain or DrainState::Drained
(equivalent to returning 0 in the old system) if they are already in a
consistent state. Returning DrainState::Running is considered an
error.
Drain done signalling is now done through the signalDrainDone() method
in the Drainable class instead of using the DrainManager directly. The
new call checks if the state of the object is DrainState::Draining
before notifying the drain manager. This means that it is safe to call
signalDrainDone() without first checking if the simulator has
requested draining. The intention here is to reduce the code needed to
implement draining in simple objects.
|
|
This patch introduces latencies in crossbar that were neglected
before. In particular, it adds three parameters in crossbar model:
front_end_latency, forward_latency, and response_latency. Along with
these parameters, three corresponding members are added:
frontEndLatency, forwardLatency, and responseLatency. The coherent
crossbar has an additional snoop_response_latency.
The latency of the request path through the xbar is set as
--> frontEndLatency + forwardLatency
In case the snoop filter is enabled, the request path latency is charged
also by look-up latency of the snoop filter.
--> frontEndLatency + SF(lookupLatency) + forwardLatency.
The latency of the response path through the xbar is set instead as
--> responseLatency.
In case of snoop response, if the response is treated as a normal response
the latency associated is again
--> responseLatency;
If instead it is forwarded as snoop response we add an additional variable
+ snoopResponseLatency
and the latency associated is
--> snoopResponseLatency;
Furthermore, this patch lets the crossbar progress on the next clock
edge after an unused retry, changing the time the crossbar considers
itself busy after sending a retry that was not acted upon.
|
|
This patch fixes a long-standing isue with the port flow
control. Before this patch the retry mechanism was shared between all
different packet classes. As a result, a snoop response could get
stuck behind a request waiting for a retry, even if the send/recv
functions were split. This caused message-dependent deadlocks in
stress-test scenarios.
The patch splits the retry into one per packet (message) class. Thus,
sendTimingReq has a corresponding recvReqRetry, sendTimingResp has
recvRespRetry etc. Most of the changes to the code involve simply
clarifying what type of request a specific object was accepting.
The biggest change in functionality is in the cache downstream packet
queue, facing the memory. This queue was shared by requests and snoop
responses, and it is now split into two queues, each with their own
flow control, but the same physical MasterPort. These changes fixes
the previously seen deadlocks.
|
|
This patch clarifies the packet timings annotated
when going through a crossbar.
The old 'firstWordDelay' is replaced by 'headerDelay' that represents
the delay associated to the delivery of the header of the packet.
The old 'lastWordDelay' is replaced by 'payloadDelay' that represents
the delay needed to processing the payload of the packet.
For now the uses and values remain identical. However, going forward
the payloadDelay will be additive, and not include the
headerDelay. Follow-on patches will make the headerDelay capture the
pipeline latency incurred in the crossbar, whereas the payloadDelay
will capture the additional serialisation delay.
|
|
|
|
This patch changes the name of the Bus classes to XBar to better
reflect the actual timing behaviour. The actual instances in the
config scripts are not renamed, and remain as e.g. iobus or membus.
As part of this renaming, the code has also been clean up slightly,
making use of range-based for loops and tidying up some comments. The
only changes outside the bus/crossbar code is due to the delay
variables in the packet.
--HG--
rename : src/mem/Bus.py => src/mem/XBar.py
rename : src/mem/coherent_bus.cc => src/mem/coherent_xbar.cc
rename : src/mem/coherent_bus.hh => src/mem/coherent_xbar.hh
rename : src/mem/noncoherent_bus.cc => src/mem/noncoherent_xbar.cc
rename : src/mem/noncoherent_bus.hh => src/mem/noncoherent_xbar.hh
rename : src/mem/bus.cc => src/mem/xbar.cc
rename : src/mem/bus.hh => src/mem/xbar.hh
|