Age | Commit message (Collapse) | Author |
|
The Python wrappers generally assume that destructors are public. Make
the BaseXBar destructor public to avoid confusing the Python wrapper.
Change-Id: If958802409c0be74e875dd6e279742abfdb3ede1
Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-by: Nikos Nikoleris <nikos.nikoleris@arm.com>
Reviewed-by: Curtis Dunham <curtis.dunham@arm.com>
|
|
This patch performs two minor fixes to DRAMCtrl.py and xbar.hh in favor of the
HMC patch series.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
This patch moves away from using M5_ATTR_OVERRIDE and the m5::hashmap
(and similar) abstractions, as these are no longer needed with gcc 4.7
and clang 3.1 as minimum compiler versions.
|
|
The drain() call currently passes around a DrainManager pointer, which
is now completely pointless since there is only ever one global
DrainManager in the system. It also contains vestiges from the time
when SimObjects had to keep track of their child objects that needed
draining.
This changeset moves all of the DrainState handling to the Drainable
base class and changes the drain() and drainResume() calls to reflect
this. Particularly, the drain() call has been updated to take no
parameters (the DrainManager argument isn't needed) and return a
DrainState instead of an unsigned integer (there is no point returning
anything other than 0 or 1 any more). Drainable objects should return
either DrainState::Draining (equivalent to returning 1 in the old
system) if they need more time to drain or DrainState::Drained
(equivalent to returning 0 in the old system) if they are already in a
consistent state. Returning DrainState::Running is considered an
error.
Drain done signalling is now done through the signalDrainDone() method
in the Drainable class instead of using the DrainManager directly. The
new call checks if the state of the object is DrainState::Draining
before notifying the drain manager. This means that it is safe to call
signalDrainDone() without first checking if the simulator has
requested draining. The intention here is to reduce the code needed to
implement draining in simple objects.
|
|
Draining is currently done by traversing the SimObject graph and
calling drain()/drainResume() on the SimObjects. This is not ideal
when non-SimObjects (e.g., ports) need draining since this means that
SimObjects owning those objects need to be aware of this.
This changeset moves the responsibility for finding objects that need
draining from SimObjects and the Python-side of the simulator to the
DrainManager. The DrainManager now maintains a set of all objects that
need draining. To reduce the overhead in classes owning non-SimObjects
that need draining, objects inheriting from Drainable now
automatically register with the DrainManager. If such an object is
destroyed, it is automatically unregistered. This means that drain()
and drainResume() should never be called directly on a Drainable
object.
While implementing the new functionality, the DrainManager has now
been made thread safe. In practice, this means that it takes a lock
whenever it manipulates the set of Drainable objects since SimObjects
in different threads may create Drainable objects
dynamically. Similarly, the drain counter is now an atomic_uint, which
ensures that it is manipulated correctly when objects signal that they
are done draining.
A nice side effect of these changes is that it makes the drain state
changes stricter, which the simulation scripts can exploit to avoid
redundant drains.
|
|
This patch changes how the crossbar classes deal with
responses. Instead of forwarding responses directly and burdening the
neighbouring modules in paying for the latency (through the
pkt->headerDelay), we now queue them before sending them.
The coherency protocol is not affected as requests and any snoop
requests/responses are still passed on in zero time. Thus, the
responses end up paying for any header delay accumulated when passing
through the crossbar. Any latency incurred on the request path will be
paid for on the response side, if no other module has dealt with it.
As a result of this patch, responses are returned at a later
point. This affects the number of outstanding transactions, and quite
a few regressions see an impact in blocking due to no MSHRs, increased
cache-miss latencies, etc.
Going forward we should be able to use the same concept also for snoop
responses, and any request that is not an express snoop.
|
|
This patch introduces latencies in crossbar that were neglected
before. In particular, it adds three parameters in crossbar model:
front_end_latency, forward_latency, and response_latency. Along with
these parameters, three corresponding members are added:
frontEndLatency, forwardLatency, and responseLatency. The coherent
crossbar has an additional snoop_response_latency.
The latency of the request path through the xbar is set as
--> frontEndLatency + forwardLatency
In case the snoop filter is enabled, the request path latency is charged
also by look-up latency of the snoop filter.
--> frontEndLatency + SF(lookupLatency) + forwardLatency.
The latency of the response path through the xbar is set instead as
--> responseLatency.
In case of snoop response, if the response is treated as a normal response
the latency associated is again
--> responseLatency;
If instead it is forwarded as snoop response we add an additional variable
+ snoopResponseLatency
and the latency associated is
--> snoopResponseLatency;
Furthermore, this patch lets the crossbar progress on the next clock
edge after an unused retry, changing the time the crossbar considers
itself busy after sending a retry that was not acted upon.
|
|
This patch fixes a long-standing isue with the port flow
control. Before this patch the retry mechanism was shared between all
different packet classes. As a result, a snoop response could get
stuck behind a request waiting for a retry, even if the send/recv
functions were split. This caused message-dependent deadlocks in
stress-test scenarios.
The patch splits the retry into one per packet (message) class. Thus,
sendTimingReq has a corresponding recvReqRetry, sendTimingResp has
recvRespRetry etc. Most of the changes to the code involve simply
clarifying what type of request a specific object was accepting.
The biggest change in functionality is in the cache downstream packet
queue, facing the memory. This queue was shared by requests and snoop
responses, and it is now split into two queues, each with their own
flow control, but the same physical MasterPort. These changes fixes
the previously seen deadlocks.
|
|
This patch clarifies the packet timings annotated
when going through a crossbar.
The old 'firstWordDelay' is replaced by 'headerDelay' that represents
the delay associated to the delivery of the header of the packet.
The old 'lastWordDelay' is replaced by 'payloadDelay' that represents
the delay needed to processing the payload of the packet.
For now the uses and values remain identical. However, going forward
the payloadDelay will be additive, and not include the
headerDelay. Follow-on patches will make the headerDelay capture the
pipeline latency incurred in the crossbar, whereas the payloadDelay
will capture the additional serialisation delay.
|
|
This patch removes the need for a source and destination field in the
packet by shifting the onus of the tracking to the crossbar, much like
a real implementation. This change in behaviour also means we no
longer need a SenderState to remember the source/dest when ever we
have multiple crossbars in the system. Thus, the stack that was
created by the SenderState is not needed, and each crossbar locally
tracks the response routing.
The fields in the packet are still left behind as the RubyPort (which
also acts as a crossbar) does routing based on them. In the succeeding
patches the uses of the src and dest field will be removed. Combined,
these patches improve the simulation performance by roughly 2%.
|
|
This patch changes the name of the Bus classes to XBar to better
reflect the actual timing behaviour. The actual instances in the
config scripts are not renamed, and remain as e.g. iobus or membus.
As part of this renaming, the code has also been clean up slightly,
making use of range-based for loops and tidying up some comments. The
only changes outside the bus/crossbar code is due to the delay
variables in the packet.
--HG--
rename : src/mem/Bus.py => src/mem/XBar.py
rename : src/mem/coherent_bus.cc => src/mem/coherent_xbar.cc
rename : src/mem/coherent_bus.hh => src/mem/coherent_xbar.hh
rename : src/mem/noncoherent_bus.cc => src/mem/noncoherent_xbar.cc
rename : src/mem/noncoherent_bus.hh => src/mem/noncoherent_xbar.hh
rename : src/mem/bus.cc => src/mem/xbar.cc
rename : src/mem/bus.hh => src/mem/xbar.hh
|