Age | Commit message (Collapse) | Author |
|
Context IDs used to be declared as ad hoc (usually as int). This
changeset introduces a typedef for ContextIDs and a constant for
invalid context IDs.
|
|
This patch removes the extraneous flags and attributes from the
request and packet, and simply leaves the new commands. The change
introduced when adding acquire/release breaks all compatibility with
existing traces, and there is really no need for any new flags and
attributes. The commands should be sufficient.
This patch fixes packet tracing (urgent), and also removes the
unnecessary complexity.
|
|
--HG--
extra : rebase_source : 9dba84eaf9c734a114ecd0940e1d505303644064
|
|
This changeset moves the access trace functionality from the
CommMonitor into a separate probe. The probe can be hooked up to any
component that exports probe points of the type ProbePoints::Packet.
This patch moves the dependency on Google's Protocol Buffers library
from the CommMonitor to the MemTraceProbe, which means that the
CommMonitor (including stack distance profiling) no long depends on
it.
|
|
This changeset removes the stack distance calculator hooks from the
CommMonitor class and implements a stack distance calculator as a
memory system probe instead. The probe can be hooked up to any
component that exports probe points of the type ProbePoints::Packet.
|
|
This changeset adds a standardized probe point type to monitor packets
in the memory system and adds two probe points to the CommMonitor
class. These probe points enable monitoring of successfully delivered
requests and successfully delivered responses.
Memory system probe listeners should use the BaseMemProbe base class
to provide a unified configuration interface and reuse listener
registration code. Unlike the ProbeListenerObject class, the
BaseMemProbe allows objects to be wired to multiple ProbeManager
instances as long as they use the same probe point name.
|
|
There are 2 problems with the existing checkpoint and restore code in ruby.
The first is that when the event queue is altered by ruby during serialization,
some events that are currently scheduled cannot be found (e.g. the event to
stop simulation that always lives on the queue), causing a panic.
The second is that ruby is sometimes serialized after the memory system,
meaning that the dirty data in its cache is flushed back to memory too late
and so isn't included in the checkpoint.
These are fixed by implementing memory writeback in ruby, using the same
technique of hijacking the event queue, but first descheduling all events that
are currently on it. They are saved, along with their scheduled time, so that
the event queue can be faithfully reconstructed after writeback has finished.
Events with the AutoDelete flag set will delete themselves when they
are descheduled, causing an error when attempting to schedule them again.
This is fixed by simply not recording them when taking them off the queue.
Writeback is still implemented using flushing, so the cache recorder object,
that is created to generate the trace and manage flushing, is kept
around and used during serialization to write the trace to disk.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
1. Eliminate state NP in L0 and L1 Caches: The two states 'NP' and 'I' both
mean that the cache block is not present in the cache. 'I' also means that the
cache entry has been allocated. This causes problems when we do not correctly
initialize the cache entry when it is re-used. Hence, this patch eliminates
the state NP altogether. Everytime a new block comes into the cache, a cache
entry is allocated. Everytime a block leaves, the corresponding entry is
deallocated.
2. Separate transient state for instruction fetches: purely for accouting
purposes.
3. Drop state IS_I in L1 Cache and the message type STALE_DATA: when
invalidation is received for a block in IS, the block used to be moved to IS_I.
This meant that the data that would arrive in future would be used but not
stored since the controller lost the permissions after gaining them. This
state is being dropped and now invalidation messages would not processed till
the data has arrived. This also means that STALE_DATA type is not longer
required.
|
|
The level 2 controller has a bug. In one particular action, the data block was
copied from a message irrespective whether the block is dirty or not. In cases
when L1 sends no data, the data value copied was incorrect.
|
|
It is perfectly valid to compare the same message and the greater than
operator should work correctly.
|
|
Added dprintfs and asserts for identifying stall and wait bugs.
|
|
|
|
For many years the slicc symbol table has supported overloaded functions in
external classes. This patch extends that support to functions that are not
part of classes (a.k.a. no parent). For example, this support allows slicc
to understand that mapAddressToRange is overloaded and the NodeID is an
optional parameter.
|
|
This patch changes the router pipeline stages from 4 to 2. The
canonical 4-stage router is conservative while a lower-latency router
with look ahead routing and speculative allocation is well acknowledged.
|
|
Sets m_stage.second to the second parameter of the function.
Then, for every place where advance_stage is called, adds
a cycle to the argument being passed.
|
|
Adds features to allow protocols to reschedule controllers when conditionally
stalling within inport logic or actions. Also insures that resource and
protocol stalls are re-evaluated the next cycle.
|
|
This patch adds support that allows the replacement policy to identify each
cache block's access permission. This information can be useful when making
replacement decisions.
|
|
|
|
The Ruby banked array resource checks (initiated from SLICC) did a check and
allocate at the same time. If a transition needs more than one resource, then
it might check/allocate resource #1, then fail to get resource #2. Another
transition might then try to get the same resources, but in reverse order.
Deadlock.
This patch separates resource checking and resource reservation into two
steps to avoid deadlock.
|
|
It was previously possible for a stalled message to be reordered after an
incomming message. This patch ensures that any stalled message stays in its
original request order.
|
|
Add support for acquire and release requests. These synchronization operations
are commonly supported by several modern instruction sets.
|
|
|
|
This patch adds a few helpful functions that allow .sm files to directly
invalidate all cache blocks using a trigger queue rather than rely on each
individual cache block to be invalidated via requests from the mandatory
queue.
|
|
This patch allows DPRINTFs to be used in SLICC state machines similar to how
they are used by the rest of gem5. Previously all DPRINTFs in the .sm files
had to use the RubySlicc flag.
|
|
|
|
this is in preparation for other replacement policies that take additional
parameters.
|
|
This patch exposes the tag and data array latencies to the SLICC state machines
so that it can be used to determine the correct enqueue latency for response
messages.
|
|
To have multiple Entry types (e.g., a cache Entry type and
a directory Entry type), just declare one of them as a secondary
type by using the pair 'main="false"', e.g.:
structure(DirEntry, desc="...", interface="AbstractCacheEntry",
main="false") {
...and the primary type would be declared:
structure(Entry, desc="...", interface="AbstractCacheEntry") {
|
|
These were not generating the correct c names for types declared within a
machine scope.
|
|
|
|
This patch fixes the type handling when prefix operations are used. Previously
prefix operators would assume a void return type, which made it impossible to
combine prefix operations with other expressions. This patch allows SLICC
programmers to use prefix operations more naturally.
|
|
This patches adds support for transitions of the form:
transition(START, EVENTS, *) { ACTIONS }
This allows a machine to collapse states that differ only in the next state
transition to collapse into one, and can help shorten/simplfy some protocols
significantly.
When * is encountered as an end state of a transition, the next state is
determined by calling the machine-specific getNextState function. The next
state is determined before any actions of the transition execute, and
therefore the next state calculation cannot depend on any of the transition
actions.
|
|
This patch allows SLICC protocols to use more than one message type with a
message buffer. For example, you can declare two in ports as such:
in_port(ResponseQueue_in, ResponseMsg, responseFromDir, rank=3) { ... }
in_port(tgtResponseQueue_in, TgtResponseMsg, responseFromDir, rank=2) { ... }
|
|
|
|
This patch was created by Bihn Pham during his internship at AMD.
There is no need to delay hit callback response messages by a cycle because
the response latency is already incurred in the Ruby protocol. This ensures
correct timing of memory instructions.
|
|
This helper function is very useful converting address offsets to integers
that can be used for protocol specific destination mapping.
|
|
Added two data block dprints that are useful when tracking down data check
failures in the ruby random tester.
|
|
This fix prevents spurious errors when searching for a symbol that may be
located in one of multiple symbol tables.
|
|
This patch adds a missing clean eviction, occuring when an uncacheable
access flushes and invalidates an existing block.
|
|
This patch removes the RequestCause, and also simplifies how we
schedule the sending of packets through the memory-side port. The
deassertion of bus requests is removed as it is not used.
|
|
This patch makes cache sets aware of the way number. This enables
some nice features such as the ablity to restrict way allocation. The
implemented mechanism allows to set a maximum way number to be
allocated 'k' which must fulfill 0 < k <= N (where N is the number of
ways). In the future more sophisticated mechasims can be implemented.
|
|
This patch changes how writebacks communicate whether the line is
passed as modified or owned. Previously we relied on the
isSupplyExclusive mechanism, which was originally designed to avoid
unecessary snoops.
For normal cache requests we use the sharedAsserted mechanism to
determine if a block should be marked writeable or not, and with this
patch we transition the writebacks to also use this
mechanism. Conceptually this is cleaner and more consistent.
|
|
This patch modernises and tidies up the CacheBlk, removing dead code.
|
|
Some minor fixes and removal of dead code. Changing the flags to be
enums rather than static const (to avoid any linking issues caused by
the latter). Also adding a getBlockAddr member which hopefully can
slowly finds its way into caches, snoop filters etc.
|
|
|
|
|
|
|
|
Somehow this one slipped through without being updated.
|
|
This is another step in the process of removing global variables
from Ruby to enable multiple RubySystem instances in a single simulation.
The list of abstract controllers is per-RubySystem and should be
represented that way, rather than as a global.
Since this is the last remaining Ruby global variable, the
src/mem/ruby/Common/Global.* files are also removed.
|
|
This is another step in the process of removing global variables
from Ruby to enable multiple RubySystem instances in a single simulation.
With possibly multiple RubySystem objects, we can no longer use a global
variable to find "the" RubySystem object. Instead, each Ruby component
has to carry a pointer to the RubySystem object to which it belongs.
|