Age | Commit message (Collapse) | Author |
|
This patch moves send/recvTiming and send/recvTimingSnoop from the
Port base class to the MasterPort and SlavePort, and also splits them
into separate member functions for requests and responses:
send/recvTimingReq, send/recvTimingResp, and send/recvTimingSnoopReq,
send/recvTimingSnoopResp. A master port sends requests and receives
responses, and also receives snoop requests and sends snoop
responses. A slave port has the reciprocal behaviour as it receives
requests and sends responses, and sends snoop requests and receives
snoop responses.
For all MemObjects that have only master ports or slave ports (but not
both), e.g. a CPU, or a PIO device, this patch merely adds more
clarity to what kind of access is taking place. For example, a CPU
port used to call sendTiming, and will now call
sendTimingReq. Similarly, a response previously came back through
recvTiming, which is now recvTimingResp. For the modules that have
both master and slave ports, e.g. the bus, the behaviour was
previously relying on branches based on pkt->isRequest(), and this is
now replaced with a direct call to the apprioriate member function
depending on the type of access. Please note that send/recvRetry is
still shared by all the timing accessors and remains in the Port base
class for now (to maintain the current bus functionality and avoid
changing the statistics of all regressions).
The packet queue is split into a MasterPort and SlavePort version to
facilitate the use of the new timing accessors. All uses of the
PacketQueue are updated accordingly.
With this patch, the type of packet (request or response) is now well
defined for each type of access, and asserts on pkt->isRequest() and
pkt->isResponse() are now moved to the appropriate send member
functions. It is also worth noting that sendTimingSnoopReq no longer
returns a boolean, as the semantics do not alow snoop requests to be
rejected or stalled. All these assumptions are now excplicitly part of
the port interface itself.
|
|
The computation for link utilization was incorrect for the flexible network.
The utilization was being divided twice by the total time.
|
|
|
|
This patch makes some rather trivial simplifications to the bus in
that it changes the use of BusMasterPort and BusSlavePort pointers to
simply use MasterPort and SlavePort (iterators are also updated
accordingly).
This change is a step towards a future patch that introduces a
separation of the interface and the structural port itself.
|
|
This patch introduces the PortId type, moves the definition of
INVALID_PORT_ID to the Port class, and also gives every port an id to
reflect the fact that each element in a vector port has an
identifier/index.
Previously the bus and Ruby testers (and potentially other users of
the vector ports) added the id field in their port subclasses, and now
this functionality is always present as it is moved to the base class.
|
|
This patch simplifies the packet by removing the broadcast flag and
instead more firmly relying on (and enforcing) the semantics of
transactions in the classic memory system, i.e. request packets are
routed from a master to a slave based on the address, and when they
are created they have neither a valid source, nor destination. On
their way to the slave, the request packet is updated with a source
field for all modules that multiplex packets from multiple master
(e.g. a bus). When a request packet is turned into a response packet
(at the final slave), it moves the potentially populated source field
to the destination field, and the response packet is routed through
any multiplexing components back to the master based on the
destination field.
Modules that connect multiplexing components, such as caches and
bridges store any existing source and destination field in the sender
state as a stack (just as before).
The packet constructor is simplified in that there is no longer a need
to pass the Packet::Broadcast as the destination (this was always the
case for the classic memory system). In the case of Ruby, rather than
using the parameter to the constructor we now rely on setDest, as
there is already another three-argument constructor in the packet
class.
In many places where the packet information was printed as part of
DPRINTFs, request packets would be printed with a numeric "dest" that
would always be -1 (Broadcast) and that field is now removed from the
printing.
|
|
This patch introduces port access methods that separates snoop
request/responses from normal memory request/responses. The
differentiation is made for functional, atomic and timing accesses and
builds on the introduction of master and slave ports.
Before the introduction of this patch, the packets belonging to the
different phases of the protocol (request -> [forwarded snoop request
-> snoop response]* -> response) all use the same port access
functions, even though the snoop packets flow in the opposite
direction to the normal packet. That is, a coherent master sends
normal request and receives responses, but receives snoop requests and
sends snoop responses (vice versa for the slave). These two distinct
phases now use different access functions, as described below.
Starting with the functional access, a master sends a request to a
slave through sendFunctional, and the request packet is turned into a
response before the call returns. In a system without cache coherence,
this is all that is needed from the functional interface. For the
cache-coherent scenario, a slave also sends snoop requests to coherent
masters through sendFunctionalSnoop, with responses returned within
the same packet pointer. This is currently used by the bus and caches,
and the LSQ of the O3 CPU. The send/recvFunctional and
send/recvFunctionalSnoop are moved from the Port super class to the
appropriate subclass.
Atomic accesses follow the same flow as functional accesses, with
request being sent from master to slave through sendAtomic. In the
case of cache-coherent ports, a slave can send snoop requests to a
master through sendAtomicSnoop. Just as for the functional access
methods, the atomic send and receive member functions are moved to the
appropriate subclasses.
The timing access methods are different from the functional and atomic
in that requests and responses are separated in time and
send/recvTiming are used for both directions. Hence, a master uses
sendTiming to send a request to a slave, and a slave uses sendTiming
to send a response back to a master, at a later point in time. Snoop
requests and responses travel in the opposite direction, similar to
what happens in functional and atomic accesses. With the introduction
of this patch, it is possible to determine the direction of packets in
the bus, and no longer necessary to look for both a master and a slave
port with the requested port id.
In contrast to the normal recvFunctional, recvAtomic and recvTiming
that are pure virtual functions, the recvFunctionalSnoop,
recvAtomicSnoop and recvTimingSnoop have a default implementation that
calls panic. This is to allow non-coherent master and slave ports to
not implement these functions.
|
|
This patch addresses a number of minor issues that cause problems when
compiling with clang >= 3.0 and gcc >= 4.6. Most importantly, it
avoids using the deprecated ext/hash_map and instead uses
unordered_map (and similarly so for the hash_set). To make use of the
new STL containers, g++ and clang has to be invoked with "-std=c++0x",
and this is now added for all gcc versions >= 4.6, and for clang >=
3.0. For gcc >= 4.3 and <= 4.5 and clang <= 3.0 we use the tr1
unordered_map to avoid the deprecation warning.
The addition of c++0x in turn causes a few problems, as the
compiler is more stringent and adds a number of new warnings. Below,
the most important issues are enumerated:
1) the use of namespaces is more strict, e.g. for isnan, and all
headers opening the entire namespace std are now fixed.
2) another other issue caused by the more stringent compiler is the
narrowing of the embedded python, which used to be a char array,
and is now unsigned char since there were values larger than 128.
3) a particularly odd issue that arose with the new c++0x behaviour is
found in range.hh, where the operator< causes gcc to complain about
the template type parsing (the "<" is interpreted as the beginning
of a template argument), and the problem seems to be related to the
begin/end members introduced for the range-type iteration, which is
a new feature in c++11.
As a minor update, this patch also fixes the build flags for the clang
debug target that used to be shared with gcc and incorrectly use
"-ggdb".
|
|
This patch fixes a bug in Ruby that caused non-deterministic
simulation when changing the underlying hash map implementation. The
reason is order-dependent behaviour in combination with iteration over
the hash map contents. The two locations where a sorted container is
assumed are now changed to make use of a std::map instead of the
unordered hash map.
With this change, the stats changes slightly and the follow-on
changeset will update the relevant statistics.
|
|
|
|
Fixes checkpointing with respect to lost events after swapping event queues.
Also adds DPRINTFs to better understand what's going on when Ruby serializes
and unserializes.
|
|
|
|
|
|
regression tester to check this functionality
|
|
This patch allows the ruby tester to support protocols where the i-cache and d-cache
are managed by seperate controllers.
|
|
This patch removes the assumption on having on single instance of
PhysicalMemory, and enables a distributed memory where the individual
memories in the system are each responsible for a single contiguous
address range.
All memories inherit from an AbstractMemory that encompasses the basic
behaviuor of a random access memory, and provides untimed access
methods. What was previously called PhysicalMemory is now
SimpleMemory, and a subclass of AbstractMemory. All future types of
memory controllers should inherit from AbstractMemory.
To enable e.g. the atomic CPU and RubyPort to access the now
distributed memory, the system has a wrapper class, called
PhysicalMemory that is aware of all the memories in the system and
their associated address ranges. This class thus acts as an
infinitely-fast bus and performs address decoding for these "shortcut"
accesses. Each memory can specify that it should not be part of the
global address map (used e.g. by the functional memories by some
testers). Moreover, each memory can be configured to be reported to
the OS configuration table, useful for populating ATAG structures, and
any potential ACPI tables.
Checkpointing support currently assumes that all memories have the
same size and organisation when creating and resuming from the
checkpoint. A future patch will enable a more flexible
re-organisation.
--HG--
rename : src/mem/PhysicalMemory.py => src/mem/AbstractMemory.py
rename : src/mem/PhysicalMemory.py => src/mem/SimpleMemory.py
rename : src/mem/physical.cc => src/mem/abstract_mem.cc
rename : src/mem/physical.hh => src/mem/abstract_mem.hh
rename : src/mem/physical.cc => src/mem/simple_mem.cc
rename : src/mem/physical.hh => src/mem/simple_mem.hh
|
|
This patch removes the DRAM memory class in preparation for updates to
the memory system, with the first one introducing an abstract memory
class, and removing the assumption of a single physical memory.
|
|
This patch removes the physMemPort from the RubySequencer and instead
uses the system pointer to access the physmem. The system already
keeps track of the physmem and the valid memory address ranges, and
with this patch we merely make use of that existing functionality. The
memory is modified so that it is possible to call the access functions
(atomic and functional) without going through the port, and the memory
is allowed to be unconnected, i.e. have no ports (since Ruby does not
attach it like the conventional memory system).
|
|
This patch introduces the notion of a master and slave port in the C++
code, thus bringing the previous classification from the Python
classes into the corresponding simulation objects and memory objects.
The patch enables us to classify behaviours into the two bins and add
assumptions and enfore compliance, also simplifying the two
interfaces. As a starting point, isSnooping is confined to a master
port, and getAddrRanges to slave ports. More of these specilisations
are to come in later patches.
The getPort function is not getMasterPort and getSlavePort, and
returns a port reference rather than a pointer as NULL would never be
a valid return value. The default implementation of these two
functions is placed in MemObject, and calls fatal.
The one drawback with this specific patch is that it requires some
code duplication, e.g. QueuedPort becomes QueuedMasterPort and
QueuedSlavePort, and BusPort becomes BusMasterPort and BusSlavePort
(avoiding multiple inheritance). With the later introduction of the
port interfaces, moving the functionality outside the port itself, a
lot of the duplicated code will disappear again.
|
|
This patch fixes a compilation error caused by a length mismatch on
32-bit hosts. The ifdef and sprintf is replaced by a csprintf.
|
|
This patch unifies the recvFunctional, recvAtomic and recvTiming to
all be based on a similar structure: 1) extract information about the
incoming packet, 2) send it out to the appropriate snoopers, 3)
determine where it is going, and 4) forward it to the right
destination. The naming of variables across the different access
functions is now consistent as well.
Additionally, the patch introduces the member functions releaseBus and
retryWaiting to better distinguish between the two cases when we
should tell a sender to retry. The first case is when the bus goes
from busy to idle, and the second case is when it receives a retry
from a destination that did not immediatelly accept a packet.
As a very minor change, the MMU debug flag is no longer used in the bus.
|
|
This patch decouples the queueing and the port interactions to
simplify the introduction of the master and slave ports. By separating
the queueing functionality from the port itself, it becomes much
easier to distinguish between master and slave ports, and still retain
the queueing ability for both (without code duplication).
As part of the split into a PacketQueue and a port, there is now also
a hierarchy of two port classes, QueuedPort and SimpleTimingPort. The
QueuedPort is useful for ports that want to leave the packet
transmission of outgoing packets to the queue and is used by both
master and slave ports. The SimpleTimingPort inherits from the
QueuedPort and adds the implemention of recvTiming and recvFunctional
through recvAtomic.
The PioPort and MessagePort are cleaned up as part of the changes.
--HG--
rename : src/mem/tport.cc => src/mem/packet_queue.cc
rename : src/mem/tport.hh => src/mem/packet_queue.hh
|
|
This patch removes the overriding of "-Werror" in a handful of
cases. The code compiles with gcc 4.6.3 and clang 3.0 without any
warnings, and thus without any errors. There are no functional changes
introduced by this patch. In the future, rather than ypassing
"-Werror", address the warnings.
|
|
This patch
(1) Moves redundant code from fixed and flexible networks to BaseGarnetNetwork.
(2) Prints network stats at vnet granularity.
|
|
|
|
1. --implicit-cache behavior is default.
2. makeEnv in src/SConscript is conditionally called.
3. decider set to MD5-timestamp
4. NO_HTML build option changed to SLICC_HTML (defaults to False)
|
|
This patch renames the sendTiming member function in the RubyPort to
avoid inadvertently hiding Port::sendTiming (discovered through some
rather painful debugging). The RubyPort does, in fact, rely on the
functionality of the queued port and the implementation merely
schedules a send the next cycle. The new name for the member function
is sendNextCycle to better reflect this behaviour.
In the unlikely event that we ever shift to using C++11 the member
functions in Port should have a "final" identifier to prevent any
overriding in derived classes.
|
|
The block is never inserted because it's the one extra block in the cache, but
it can be invalidated twice in a row. In that case the block doesn't have a
new master id (beacuse it was never inserted), however it is valid and
the accounting goes wrong at that point.
|
|
This is a trivial patch that merely makes all the member functions of
the port proxies const. There is no good reason why they should not
be, and this change only serves to make it explicit that they are not
modified through their use.
|
|
This patch splits the two cache ports into a master (memory-side) and
slave (cpu-side) subclass of port with slightly different
functionality. For example, it is only the CPU-side port that blocks
incoming requests, and only the memory-side port that schedules send
events outside of what the transmit list dictates.
This patch simplifies the two classes by relying further on
SimpleTimingPort and also generalises the latter to better accommodate
the changes (introducing trySendTiming and scheduleSend). The
memory-side cache port overrides sendDeferredPacket to be able to not
only send responses from the transmit list, but also send requests
based on the MSHRs.
A follow on patch further simplifies the SimpleTimingPort and the
cache ports.
|
|
This patch simplifies the mport in preparation for a split into a
master and slave role for the message ports. In particular,
sendMessageAtomic was only used in a single location and similarly so
sendMessageTiming. The affected interrupt device is updated
accordingly.
|
|
This patch moves the readBlob/writeBlob/memsetBlob from the Port class
to the PortProxy class, thus making a clear separation of the basic
port functionality (recv/send functional/atomic/timing), and the
higher-level functional accessors available on the port proxies.
There are only a few places in the code base where the blob functions
were used on ports, and they are all for peeking into the memory
system without making a normal memory access (in the memtest, and the
malta and tsunami pchip). The memtest also exemplifies how easy it is
to create a non-translating proxy if desired. The malta and tsunami
pchip used a slave port to perform a functional read, and this is now
changed to rely on the physProxy of the system (to which they already
have a pointer).
|
|
This patch is adding a clearer design intent to all objects that would
not be complete without a port proxy by making the proxies members
rathen than dynamically allocated. In essence, if NULL would not be a
valid value for the proxy, then we avoid using a pointer to make this
clear.
The same approach is used for the methods using these proxies, such as
loadSections, that now use references rather than pointers to better
reflect the fact that NULL would not be an acceptable value (in fact
the code would break and that is how this patch started out).
Overall the concept of "using a reference to express unconditional
composition where a NULL pointer is never valid" could be done on a
much broader scale throughout the code base, but for now it is only
done in the locations affected by the proxies.
|
|
This patch moves all port creation from the getPort method to be
consistently done in the MemObject's constructor. This is possible
thanks to the Swig interface passing the length of the vector ports.
Previously there was a mix of: 1) creating the ports as members (at
object construction time) and using getPort for the name resolution,
or 2) dynamically creating the ports in the getPort call. This is now
uniform. Furthermore, objects that would not be complete without a
port have these ports as members rather than having pointers to
dynamically allocated ports.
This patch also enables an elaboration-time enumeration of all the
ports in the system which can be used to determine the masterId.
|
|
This patch continues the unification of how the different CPU models
create and share their instruction and data ports. Most importantly,
it forces every CPU to have an instruction and a data port, and gives
these ports explicit getters in the BaseCPU (getDataPort and
getInstPort). The patch helps in simplifying the code, make
assumptions more explicit, andfurther ease future patches related to
the CPU ports.
The biggest changes are in the in-order model (that was not modified
in the previous unification patch), which now moves the ports from the
CacheUnit to the CPU. It also distinguishes the instruction fetch and
load-store unit from the rest of the resources, and avoids the use of
indices and casting in favour of keeping track of these two units
explicitly (since they are always there anyways). The atomic, timing
and O3 model simply return references to their already existing ports.
|
|
This patch adds a check in the findPort method to ensure that an
invalid port id is never returned. Previously this could happen if no
default port was set, and no address matched the request, in which
case -1 was returned causing a SEGFAULT when using the id to index in
the port array. To clean things up further a symbolic name is added
for the invalid port id.
|
|
This patch classifies all ports in Python as either Master or Slave
and enforces a binding of master to slave. Conceptually, a master (such
as a CPU or DMA port) issues requests, and receives responses, and
conversely, a slave (such as a memory or a PIO device) receives
requests and sends back responses. Currently there is no
differentiation between coherent and non-coherent masters and slaves.
The classification as master/slave also involves splitting the dual
role port of the bus into a master and slave port and updating all the
system assembly scripts to use the appropriate port. Similarly, the
interrupt devices have to have their int_port split into a master and
slave port. The intdev and its children have minimal changes to
facilitate the extra port.
Note that this patch does not enforce any port typing in the C++
world, it merely ensures that the Python objects have a notion of the
port roles and are connected in an appropriate manner. This check is
carried when two ports are connected, e.g. bus.master =
memory.port. The following patches will make use of the
classifications and specialise the C++ ports into masters and slaves.
|
|
This patch fixes the cache stats to use the new request ids.
Cache stats also display the requestor names in the vector subnames.
Most cache stats now include "nozero" and "nonan" flags to reduce the
amount of excessive cache stat dump. Also, simplified
incMissCount()/incHitCount() functions.
|
|
This change adds a master id to each request object which can be
used identify every device in the system that is capable of issuing a request.
This is part of the way to removing the numCpus+1 stats in the cache and
replacing them with the master ids. This is one of a series of changes
that make way for the stats output to be changed to python.
|
|
cache
|
|
This patch removes the calls to isTagPresent() from Sequencer.cc. These
calls are made just for setting the cache block to have been most recently
used. The calls have been folded in to the function setMRU().
|
|
This patch adds support for stalling the requests queued up at different
controllers for the MESI CMP directory protocol. Earlier the controllers
would recycle the requests using some fixed latency. This results in
younger requests getting serviced first at times, and can result in
starvation. Instead all the requests that need a particular block to be
in a stable state are moved to a separate queue, where they wait till
that block returns to a stable state and then they are processed.
|
|
This patch removes the onRetryList field from the BusPort class and
entirely relies on the retryList which holds all ports that are
waiting to retry. The onRetryList field and the retryList were
previously used with overloaded functionalities and only one is really
needed (there were also checks to assert they held the same
information). After this patch the bus ports will be split into master
and slave ports and this simplifies that transition.
|
|
|
|
This patch adds the necessary flags to the SConstruct and SConscript
files for compiling using clang 2.9 and later (on Ubuntu et al and OSX
XCode 4.2), and also cleans up a bunch of compiler warnings found by
clang. Most of the warnings are related to hidden virtual functions,
comparisons with unsigneds >= 0, and if-statements with empty
bodies. A number of mismatches between struct and class are also
fixed. clang 2.8 is not working as it has problems with class names
that occur in multiple namespaces (e.g. Statistics in
kernel_stats.hh).
clang has a bug (http://llvm.org/bugs/show_bug.cgi?id=7247) which
causes confusion between the container std::set and the function
Packet::set, and this is currently addressed by not including the
entire namespace std, but rather selecting e.g. "using std::vector" in
the appropriate places.
|
|
This patch is a very straight-forward simplification, removing the
unecessary otherPort pointer from the cache port. The pointer was only
used to forward range changes, and the address range is fixed for the
cache. Removing the pointer simplifies the transition to master/slave
ports.
|
|
Brings the CheckerCPU back to life to allow FS and SE checking of the
O3CPU. These changes have only been tested with the ARM ISA. Other
ISAs potentially require modification.
|
|
|
|
This patch makes the physMemPort of the RubyPort a PioPort rather than
an M5Port. This reflects the fact that the M5Port and PioPort have
different roles. The M5Port is really a coherent slave that is
connected to the CPUs and other coherent masters of the system,
e.g. DMA ports. The PioPort, on the other hand, is a master port that
is connected to the memory and other slaves, for example the pio
devices.
This simplifies future changes into master/slave ports and is
consistent with the port roles throughout the system.
|
|
--HG--
rename : src/mem/vport.hh => src/mem/fs_translating_port_proxy.hh
rename : src/mem/translating_port.cc => src/mem/se_translating_port_proxy.cc
rename : src/mem/translating_port.hh => src/mem/se_translating_port_proxy.hh
|