Age | Commit message (Collapse) | Author |
|
The histogram for tracking outstanding counts per cycle is maintained
in the profiler. For a parallel implementation of the memory system, we
need that this histogram is maintained locally. Hence it will now be
kept in the sequencer itself. The resulting histograms will be merged
when the stats are printed.
|
|
|
|
These functions are currently implemented in one of the files related to Slicc.
Since these are purely C++ functions, they are better suited to be in the base
class.
|
|
This patch modifies ruby so that two controllers can be connected to each
other with only message buffers in between. Before this patch, all the
controllers had to be connected to the network for them to communicate
with each other. With this patch, one can have protocols where a controller
is not connected to the network, but communicates with another controller
through a message buffer.
|
|
The Topology class in Ruby does not need to inherit from SimObject class.
This patch turns it into a regular class. The topology object is now created
in the constructor of the Network class. All the parameters for the topology
class have been moved to the network class.
|
|
|
|
This patch fixes a memory leak caused by not deleting packets that
require no response.
|
|
|
|
This patch fixes the one-and-only gcc 4.8 compilation error, being a
warning about "maybe uninitialized" in Orion.
|
|
This patch removes the functional copy of the memory that was maintained in
the se mode. Now ruby itself will provide the data.
|
|
|
|
The functional write code was assuming that all writes are block sized,
which may not be true for Ruby Requests. This bug can lead to a buffer
overflow.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
This check covers a case where a retry is called from the SimpleDRAM
causing a new request to appear before the DRAM itself schedules a
nextReqEvent. By adding this check, the event is not scheduled twice.
|
|
This patch adds a class method that allows easy creation of
channel-interleaved multi-channel DRAM configurations. It is enabled
by a class method to allow customisation of the class independent of
the channel configuration. For example, the user can create a MyDDR
subclass of e.g. SimpleDDR3, and then create a four-channel
configuration of the subclass by calling MyDDR.makeMultiChannel(4,
mem_start, mem_size).
|
|
This patch fixes a number of small cosmetic issues in the SimpleDRAM
module. The most important change is to move the accounting of
received packets to after the check is made if the packet should be
retried or not. Thus, packets are only counted if they are actually
accepted.
|
|
This patch adds support for multi-channel instances of the DRAM
controller model by stripping away the channel bits in the address
decoding. The patch relies on the availiability of address
interleaving and, at this time, it is up to the user to configure the
interleaving appropriately. At the moment it is assumed that the
channel interleaving bits are immediately following the column bits
(smallest sensible interleaving). Convenience methods for building
multi-channel configurations will be added later.
|
|
This patch adds merging of interleaved ranges before creating the
backing stores. The backing stores are always a contigous chunk of the
address space, and with this patch it is possible to have interleaved
memories in the system.
|
|
This patch adds basic merging of address ranges to the bus, such that
interleaved ranges are merged together before being passed on by the
bus. As such, the bus aggregates the address ranges of the connected
slave ports and then passes on the merged ranges through its master
ports. The bus thus hides the complexity of the interleaved ranges and
only exposes contigous ranges to the surrounding system.
As part of this patch, the bus ranges are also cached for any future
queries.
|
|
The MESI CMP directory coherence protocol, while transitioning from SM to IM,
did not invalidate the lock that it might have taken on a cache line. This
patch adds an action for doing so.
The problem was found by Dibakar, but I was not happy with his proposed
solution. So I implemented a different solution.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
|
|
|
|
This patch fixes a newly introduced bug where the sender state was
popped before checking that it should be. Amazingly all regressions
pass, but Linux fails to boot on the detailed CPU with caches enabled.
|
|
This patch fixes the warnings that clang3.2svn emit due to the "-Wall"
flag. There is one case of an uninitialised value in the ARM neon ISA
description, and then a whole range of unused private fields that are
pruned.
|
|
This patch enables warnings for missing declarations. To avoid issues
with SWIG-generated code, the warning is only applied to non-SWIG
code.
|
|
This patch address the most important name shadowing warnings (as
produced when using gcc/clang with -Wshadow). There are many
locations where constructor parameters and function parameters shadow
local variables, but these are left unchanged.
|
|
This patch adds a check to ensure that the delay incurred by
the bus is not simply disregarded, but accounted for by someone. At
this point, all the modules do is to zero it out, and no additional
time is spent. This highlights where the bus timing is simply dropped
instead of being paid for.
As a follow up, the locations identified in this patch should add this
additional time to the packets in one way or another. For now it
simply acts as a sanity check and highlights where the delay is simply
ignored.
Since no time is added, all regressions remain the same.
|
|
This patch changes the names of the cache accessor functions to be in
line with those used by the ports. This is done to avoid confusion and
get closer to a one-to-one correspondence between the interface of the
memory object (the cache in this case) and the port itself.
The member function timingAccess has been split into a snoop/non-snoop
part to avoid branching on the isResponse() of the packet.
|
|
This patch changes the bus-related time accounting done in the packet
to be relative. Besides making it easier to align the cache timing to
cache clock cycles, it also makes it possible to create a Last-Level
Cache (LLC) directly to a memory controller without a bus inbetween.
The bus is unique in that it does not ever make the packets wait to
reflect the time spent forwarding them. Instead, the cache is
currently responsible for making the packets wait. Thus, the bus
annotates the packets with the time needed for the first word to
appear, and also the last word. The cache then delays the packets in
its queues before passing them on. It is worth noting that every
object attached to a bus (devices, memories, bridges, etc) should be
doing this if we opt for keeping this way of accounting for the bus
timing.
|
|
This patch removes the time field from the packet as it was only used
by the preftecher. Similar to the packet queue, the prefetcher now
wraps the packet in a deferred packet, which also has a tick
representing the absolute time when the packet should be sent.
|
|
This patch makes the clock member private to the ClockedObject and
forces all children to access it using clockPeriod(). This makes it
impossible to inadvertently change the clock, and also makes it easier
to transition to a situation where the clock is derived from e.g. a
clock domain, or through a multiplier.
|
|
This patch fixes a potential deadlock in the caches. This deadlock
could occur when more than one cache is used in a system, and
pkt->senderState is modified in between the two caches. This happened
as the caches relied on the senderState remaining unchanged, and used
it for instantaneous upstream communication with other caches.
This issue has been addressed by iterating over the linked list of
senderStates until we are either able to cast to a MSHR* or
senderState is NULL. If the cast is successful, we know that the
packet has previously passed through another cache, and therefore
update the downstreamPending flag accordingly. Otherwise, we do
nothing.
|
|
This patch adds a predecessor field to the SenderState base class to
make the process of linking them up more uniform, and enable a
traversal of the stack without knowing the specific type of the
subclasses.
There are a number of simplifications done as part of changing the
SenderState, particularly in the RubyTest.
|
|
This patch fixes a bug in the CommMonitor caused by the packet being
modified before it is captured in the trace. By recording the fields
before passing the packet on, and then putting these values in the
trace we ensure that even if the packet is modified the trace captures
what the CommMonitor saw.
|
|
This patch merely adopts a more strict use of const for the cache
member functions and variables, and also moves a large portion of the
member functions from public to protected.
|
|
Virtualized CPUs and the fastmem mode of the atomic CPU require direct
access to physical memory. We currently require caches to be disabled
when using them to prevent chaos. This is not ideal when switching
between hardware virutalized CPUs and other CPU models as it would
require a configuration change on each switch. This changeset
introduces a new version of the atomic memory mode,
'atomic_noncaching', where memory accesses are inserted into the
memory system as atomic accesses, but bypass caches.
To make memory mode tests cleaner, the following methods are added to
the System class:
* isAtomicMode() -- True if the memory mode is 'atomic' or 'direct'.
* isTimingMode() -- True if the memory mode is 'timing'.
* bypassCaches() -- True if caches should be bypassed.
The old getMemoryMode() and setMemoryMode() methods should never be
used from the C++ world anymore.
|
|
This patch fixes a few (recently added) errors that prevented gem5 from
compiling on more recent versions of gcc and clang.
|
|
The transition for state MII and event Store was found missing during testing.
The transition is being added. The controller will not stall the Store request
in state MII
|
|
This patch allows ruby to have multiple clock domains. As I understand
with this patch, controllers can have different frequencies. The entire
network needs to run at a single frequency.
The idea is that with in an object, time is treated in terms of cycles.
But the messages that are passed from one entity to another should contain
the time in Ticks. As of now, this is only true for the message buffers,
but not for the links in the network. As I understand the code, all the
entities in different networks (simple, garnet-fixed, garnet-flexible) should
be clocked at the same frequency.
Another problem is that the directory controller has to operate at the same
frequency as the ruby system. This is because the memory controller does
not make use of the Message Buffer, and instead implements a buffer of its
own. So, it has no idea of the frequency at which the directory controller
is operating and uses ruby system's frequency for scheduling events.
|
|
This patch is as of now the final patch in the series of patches that replace
Time with Cycles.This patch further replaces Time with Cycles in Sequencer,
Profiler, different protocols and related entities.
Though Time has not been completely removed, the places where it is in use
seem benign as of now.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Concomitant changes are being committed as well, including the io operator<<
for the Cycles class.
|
|
The patch started of with replacing Time with Cycles in the Consumer class.
But to get ruby to compile, the rest of the changes had to be carried out.
Subsequent patches will further this process, till we completely replace
Time with Cycles.
|
|
This patch modifies the Histogram class' add() function so that it can add
linear histograms as well. The function assumes that the left end point of
the ranges of the two histograms are the same. It also assumes that when
the ranges of the two histogram are changed to accomodate an element not in
the range, the factor used in changing the range is same for both the
histograms.
This function is then used in removing one of the calls to the global
profiler*. The histograms for recording the delays incurred in processing
different requests are now maintained by the controllers. The profiler
adds these histograms when it needs to print the stats.
|
|
This patch does several things. First, the counter for fully busy cycles for a
controller is now kept with in the controller, instead of being part of the profiler.
Second, the topology class no longer keeps an array of controllers which was only
used for printing stats. Instead, ruby system will now ask each controller to print
the stats. Thirdly, the statistical variable for recording how many different types
were created is being moved in to the controller from the profiler. Note that for
printing, the profiler will collate results from different controllers.
|
|
The number of bits required for an address was set to floorLog2(memory size).
This is correct under the assumption that the memory size is a power of 2,
which is not always true. Hence, floorLog2 is being replaced with ceilLog2.
|