Age | Commit message (Collapse) | Author |
|
Make clang when compiling on OSX.
|
|
|
|
misc changes now that Address has become Addr including int to address util
function
|
|
The BoolVec typedef and insertion operator overload function simplify usage of
vectors of type bool
|
|
the sanity check, while generally useful for exposing memory system bugs,
may be spurious with respect to GPU workloads, which may generate many more
requests than typical CPU workloads. the large number of requests generated
by the GPU may cause the req/resp queues to back up, thus queueing more than
100 packets.
|
|
This patch adds the necessary commands and cache functionality to
allow clean writebacks. This functionality is crucial, especially when
having exclusive (victim) caches. For example, if read-only L1
instruction caches are not sending clean writebacks, there will never
be any spills from the L1 to the L2. At the moment the cache model
defaults to not sending clean writebacks, and this should possibly be
re-evaluated.
The implementation of clean writebacks relies on a new packet command
WritebackClean, which acts much like a Writeback (renamed
WritebackDirty), and also much like a CleanEvict. On eviction of a
clean block the cache either sends a clean evict, or a clean
writeback, and if any copies are still cached upstream the clean
evict/writeback is dropped. Similarly, if a clean evict/writeback
reaches a cache where there are outstanding MSHRs for the block, the
packet is dropped. In the typical case though, the clean writeback
allocates a block in the downstream cache, and marks it writable if
the evicted block was writable.
The patch changes the O3_ARM_v7a L1 cache configuration and the
default L1 caches in config/common/Caches.py
|
|
This patch adds a parameter to control the cache clusivity, that is if
the cache is mostly inclusive or exclusive. At the moment there is no
intention to support strict policies, and thus the options are: 1)
mostly inclusive, or 2) mostly exclusive.
The choice of policy guides the behaviuor on a cache fill, and a new
helper function, allocOnFill, is created to encapsulate the decision
making process. For the timing mode, the decision is annotated on the
MSHR on sending out the downstream packet, and in atomic we directly
pass the decision to handleFill. We (ab)use the tempBlock in cases
where we are not allocating on fill, leaving the rest of the cache
unaffected. Simple and effective.
This patch also makes it more explicit that multiple caches are
allowed to consider a block writable (this is the case
also before this patch). That is, for a mostly inclusive cache,
multiple caches upstream may also consider the block exclusive. The
caches considering the block writable/exclusive all appear along the
same path to memory, and from a coherency protocol point of view it
works due to the fact that we always snoop upwards in zero time before
querying any downstream cache.
Note that this patch does not introduce clean writebacks. Thus, for
clean lines we are essentially removing a cache level if it is made
mostly exclusive. For example, lines from the read-only L1 instruction
cache or table-walker cache are always clean, and simply get dropped
rather than being passed to the L2. If the L2 is mostly exclusive and
does not allocate on fill it will thus never hold the line. A follow
on patch adds the clean writebacks.
The patch changes the L2 of the O3_ARM_v7a CPU configuration to be
mostly exclusive (and stats are affected accordingly).
|
|
This patch optimises the handling of writebacks and clean evictions
when using a snoop filter. Instead of snooping into the caches to
determine if the block is cached or not, simply set the status based
on the snoop-filter result.
|
|
Instead of conservatively enforcing order for all packets, which may
negatively impact the simulated-system performance, this patch updates
the packet queue such that it only applies the restriction if there
are already packets with the same address in the queue.
The basic need for the order enforcement is due to coherency
interactions where requests/responses to the same cache line must not
over-take each other. We rely on the fact that any packet that needs
order enforcement will have a block-aligned address. Thus, there is no
need for the queue to know about the cacheline size.
|
|
This patch enforces insertion order transmission of packets on the
response path in the cache. Note that the logic to enforce order is
already present in the packet queue, this patch simply turns it on for
queues in the response path.
Without this patch, there are corner cases where a request-response is
faster than a response-response forwarded through the cache. This
violation of queuing order causes problems in the snoop filter leaving
it with inaccurate information. This causes assert failures in the
snoop filter later on.
A follow on patch relaxes the order enforcement in the packet queue to
limit the performance impact.
|
|
This patch updates the I/O devices, bridge and simple memory to take
the packet header and payload delay into account in their latency
calculations. In all cases we add the header delay, i.e. the
accumulated pipeline delay of any crossbars, and the payload delay
needed for deserialisation of any payload.
Due to the additional unknown latency contribution, the packet queue
of the simple memory is changed to use insertion sorting based on the
time stamp. Moreover, since the memory hands out exclusive (non
shared) responses, we also need to ensure ordering for reads to the
same address.
|
|
This patch aligns how the memory-system slaves, i.e. the various
memory controllers and the bridge, identify and deal with sinking of
inhibited packets that are only useful within the coherent part of the
memory system.
In the future we could shift the onus to the crossbar, and add a
parameter "is_point_of_coherence" that would allow it to sink the
aforementioned packets.
|
|
This patch changes the CleanEvict command type to not be considered a
write. Initially it was made a zero-sized write to match the writeback
command, but as things developed it became clear that it causes more
problems than it solves. For example, the memory modules (and bridge)
should not consider the CleanEvict as a write, but instead discard
it. With this patch it will be neither a read, nor write, and as it
does not need a response the slave will simply sink it.
|
|
This patch unifies how we deal with delayed packet deletion, where the
receiving slave is responsible for deleting the packet, but the
sending agent (e.g. a cache) is still relying on the pointer until the
call to sendTimingReq completes. Previously we used a mix of a
deletion vector and a construct using unique_ptr. With this patch we
ensure all slaves use the latter approach.
|
|
A few minor fixes to issues identified by the clang static analyzer.
|
|
The CoherentXBar currently doesn't check its queued slave ports when
receiving a functional snoop. This caused data corruption in cases
when a modified cache lines is forwarded between two caches.
Add the required functional calls into the queued slave ports.
|
|
This patch performs two minor fixes to DRAMCtrl.py and xbar.hh in favor of the
HMC patch series.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
This changeset adds a serial link model for the Hybrid Memory Cube (HMC).
SerialLink is a simple variation of the Bridge class, with the ability to
account for the latency of packet serialization. Also trySendTiming has been
modified to correctly model bandwidth.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
This patch models a simple HMC Controller. It simply schedules the incoming
packets to HMC Serial Links using a round robin mechanism. This patch should
be applied in series with other patches modeling a complete HMC device.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
This patch addresses the upgrading of deferred targets in the MSHR,
and makes it clearer by explicitly calling out what is happening
(deferred targets are promoted if we get exclusivity without asking
for it).
|
|
Make clang >= 3.5 happy when compiling build/X86/gem5.opt on OSX.
|
|
Allow the monitor to be placed after a snooping port, and do not fail
on snoop retries, but instead pass them on to the slave port.
|
|
The aim is to ultimately do away with the static function
Network::getNumberOfVirtualNetworks().
|
|
Not required since functional reads cannot rely on messages that are inflight.
|
|
|
|
This patch adds explicit overrides as this is now required when using
"-Wall" with clang >= 3.5, the latter now part of the most recent
XCode. The patch consequently removes "virtual" for those methods
where "override" is added. The latter should be enough of an
indication.
As part of this patch, a few minor issues that clang >= 3.5 complains
about are also resolved (unused methods and variables).
|
|
This patch moves away from using M5_ATTR_OVERRIDE and the m5::hashmap
(and similar) abstractions, as these are no longer needed with gcc 4.7
and clang 3.1 as minimum compiler versions.
|
|
Changes wakeup functionality so that only specific threads on SMT
capable cpus are woken.
|
|
If a cache entry permission was previously set to NotPresent, but the entry was
not deleted, a following cache allocation can cause the entry to be leaked by
setting the entry pointer to a newly allocated entry. To eliminate this
possibility, check if the new entry is different from the old one, and if so,
delete the old one.
|
|
In RubyPort::ruby_eviction_callback, prior changes fixed a memory leak caused
by instantiating separate packets for each port that the eviction was forwarded
to. That change, however, left the instantiated request to also leak. Allocate
it on the stack to avoid the leak.
|
|
Recent changes to memory access queuing allocate requests for packets sent to
memory controllers, but did not free the requests. Delete them to avoid leaks.
|
|
Changes to the RubyMemoryControl removed the dequeue function, which deleted
MemoryNode instances. This results in leaked MemoryNode instances. Correctly
delete these instances.
|
|
This patch fixes a use-after-delete issue in the packet probe points
by adding a PacketInfo struct to retain the key fields before passing
the packet onwards. We want to probe the packet after it is
successfully sent, but by that time the fields may be modified, and
the packet may even be deleted.
Amazingly enough the issue has gone undetected for months, and only
recently popped up in our regressions.
|
|
More checks to help with understanding of functionality.
|
|
This patch fixes issues in the interactions between deferred snoops
and WriteLineReq. More specifically, the patch addresses an issue
where deferred snoops caused assertion failures when being serviced on
the arrival of an InvalidateResp. The response packet was perceived to
be invalidating, when actually it is not for the cache that sent out
the original invalidation request.
|
|
Merely fixing up some style issues and adding more comments.
|
|
This patch tidies up how we access the snoop filter for snoops, and
avoids adding items only to later remove them.
|
|
This patch changes the tracking of ports in the snoop filter to use
local dense port IDs so that we can have 64 snooping ports (rather
than crossbar slave ports). This is achieved by adding a simple
remapping vector that translates the actal port IDs into the local
slave IDs used in the SnoopMask.
Ultimately this patch allows us to scale to much larger systems
without introducing a hierarchy of crossbars.
|
|
This patch adds a snoop filter to the L2XBar. For now we refrain from
globally adding a snoop filter to the SystemXBar, since the latter is
also used in systems without caches. In scenarios without caches the
snoop filter will not see any writeback/clean evicts from the CPU
ports, despite the fact that they are snooping. To avoid inadvertent
use of the snoop filter in these cases we leave it out for now.
A size check is added to the snoop filter, merely to ensure it does
not grow beyond the total capacity of the caches above it. The size
has to be set manually, and a value of 8 MByte is choosen as suitably
high default.
|
|
This patch introduces a private member storing the iterator from the
lookupRequest call, such that it can be re-used when the request
eventually finishes. The method previously called updateRequest is
renamed finishRequest to make it more clear that the two functions
must be called together.
|
|
This patch mirrors the logic in timing mode which sends up snoops to
check for cached copies before sending CleanEvicts and Writebacks down
the memory hierarchy. In case there is a copy in a cache above,
discard CleanEvicts and set the BLOCK_CACHED flag in Writebacks so
that writebacks do not reset the cache residency bit in the snoop
filter below.
|
|
This patch adds the functionality to properly track CleanEvicts and
Writebacks in the snoop filter. Previously there were no CleanEvicts, and
Writebacks did not send up snoops to ensure there were no copies in
caches above. Hence a writeback could never erase an entry from the
snoop filter.
When a CleanEvict message reaches a snoop filter, it confirms that the
BLOCK_CACHED flag is not set and resets the bits corresponding to the
CleanEvict address and port it arrived on. If none of the other peer
caches have (or have requested) the block, the snoop filter forwards
the CleanEvict to lower levels of memory. In case of a Writeback
message, the snoop filter checks if the BLOCK_CACHED flag is not set
and only then resets the bits corresponding to the Writeback
address. If any of the other peer caches have (or has requested) the
same block, the snoop filter sets the BLOCK_CACHED flag in the
Writeback before forwarding it to lower levels of memory heirarachy.
|
|
This patch prevents the snoop filter from creating items for requests
originating from non-snooping ports. The allocation decision is thus
based both on the cacheability of the line, and the snooping status of
the source port. Ultimately we should check if the source of the
packet is caching, since also the CPU ports are snooping (but not
allocating). Thus, at the moment we rely on the snoop filter being
used together with caches.
The patch also transitions to use the Packet::getBlockAddr in
determining the line address.
|
|
This patch introduces the concept of a snoop latency. Given the
requirement to snoop and forward packets in zero time (due to the
coherency mechanism), the latency is accounted for later.
On a snoop, we establish the latency, and later add it to the header
delay of the packet. To allow multiple caches to contribute to the
snoop latency, we use a separate variable in the packet, and then take
the maximum before adding it to the header delay.
|
|
This patch ensures that the snoop-filter latency only contributes to
the packet latency, and not to the crossbar throughput/occupancy. In
essence we treat the snoop-filter lookup as pipelined.
|
|
Drops an unused variable and marks three variables as const.
|
|
|
|
|
|
|
|
Created the following HBM configurations:
1) HBM gen1 (x128/CH), 2Gb die, 4H stack, 1Gbps, 8 channels
2) HBM gen2 (x64/PC), 8Gb die, 4H stack, 1Gbps, 16 pseudo-channels
The configuration values are based on:
- The HBM gen1 public JEDEC spec
- Publically released data from MemCon presentations
- Timing extrapolated from existing LPDDR configurations
Will adjust once specs become available.
|