Age | Commit message (Collapse) | Author |
|
For systems without caches, the LLSC code does not get snoops for
wake-ups. We add the LLSC code in the abstract memory to do the job
for us.
|
|
The last pop operation is now tracked as a Tick instead of in Cycles.
This helps in avoiding use of the receiver's clock during the enqueue
operation.
|
|
|
|
Couple of users observed segmentation fault when the simulator tries to
register the statistical variable m_IncompleteTimes. It seems that there
is some problem with the initialization of these variables when allocated
in the constructor.
|
|
Currently, the interrupt controller in x86 is connected to the io bus
directly. Therefore the packets between the io devices and the interrupt
controller do not go through ruby. This patch changes ruby port so that
these packets arrive at the ruby port first, which then routes them to their
destination. Note that the patch does not make these packets go through the
ruby network. That would happen in a subsequent patch.
|
|
This patch simplfies the retry logic in the RubyPort, avoiding
redundant attributes, and enforcing more stringent checks on the
interactions with the normal ports. The patch also simplifies the
routing done by the RubyPort, using the port identifiers instead of a
heavy-weight sender state.
The patch also fixes a bug in the sending of responses from PIO
ports. Previously these responses bypassed the queue in the queued
port, and ignored the return value, potentially leading to response
packets being lost.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
Code in two of the functions was exactly the same. This patch moves
this code to a new function which is called from the two functions
mentioned initially.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
At several places, there are functions that take a cycle value as input
and performs some computation. Along with each such function, another
function was being defined that simply added one more cycle to input and
computed the same function. This patch removes this second copy of the
function. Places where these functions were being called have been updated
to use the original function with argument being current cycle + 1.
|
|
|
|
Two files had been incorrectly named with a .cache suffix.
--HG--
rename : src/mem/protocol/MESI_Three_Level-L0.cache => src/mem/protocol/MESI_Three_Level-L0cache.sm
rename : src/mem/protocol/MESI_Three_Level-L1.cache => src/mem/protocol/MESI_Three_Level-L1cache.sm
|
|
|
|
|
|
|
|
This patch fixes a bug in how physical memory used to be mapped and
unmapped. Previously we unmapped and re-mapped if restoring from a
checkpoint. However, we never checked that the new mapping was
actually the same, it was just magically working as the OS seems to
fairly reliably give us the same chunk back. This patch fixes this
issue by relying entirely on the mmap call in the constructor.
|
|
This patch adds a filter to the cache to drop snoop requests that are
not for a range covered by the cache. This fixes an issue observed
when multiple caches are placed in parallel, covering different
address ranges. Without this patch, all the caches will forward the
snoop upwards, when only one should do so.
|
|
This patch adds DRAMSim2 as a memory controller by wrapping the
external library and creating a sublass of AbstractMemory that bridges
between the semantics of gem5 and the DRAMSim2 interface.
The DRAMSim2 wrapper extracts the clock period from the config
file. There is no way of extracting this information from DRAMSim2
itself, so we simply read the same config file and get it from there.
To properly model the response queue, the wrapper keeps track of how
many transactions are in the actual controller, and how many are
stacking up waiting to be sent back as responses (in the wrapper). The
latter requires us to move away from the queued port and manage the
packets ourselves. This is due to DRAMSim2 not having any flow control
on the response path.
DRAMSim2 assumes that the transactions it is given are matching the
burst size of the choosen memory. The wrapper checks to ensure the
cache line size of the system matches the burst size of DRAMSim2 as
there are currently no provisions to split the system requests. In
theory we could allow a cache line size smaller than the burst size,
but that would lead to inefficient use of the DRAM, so for not we
fatal also in this case.
|
|
Minor fix of the debug message parameters.
|
|
|
|
Forces the prefetcher to mispredict twice in a row before resetting the
confidence of prefetching. This helps cases where a load PC strides by a
constant factor, however it may operate on different arrays at times.
Avoids the cost of retraining. Primarily helps with small iteration loops.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
For systems with a tightly coupled L2, a stride-based prefetcher may observe
access requests from both instruction and data L1 caches. However, the PC
address of an instruction miss gives no relevant training information to the
stride based prefetcher(there is no stride to train). In theses cases, its
better if the L2 stride prefetcher simply reverted back to a simple N-block
ahead prefetcher. This patch enables this option.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
This patch extends the classic prefetcher to work on non-block aligned
addresses. Because the existing prefetchers in gem5 mask off the lower
address bits of cache accesses, many predictable strides fail to be
detected. For example, if a load were to stride by 48 bytes, with 64 byte
cachelines, the current stride based prefetcher would see an access pattern
of 0, 64, 64, 128, 192.... Thus not detecting a constant stride pattern. This
patch fixes this, by training the prefetcher on access and not masking off the
lower address bits.
It also adds the following configuration options:
1) Training/prefetching only on cache misses,
2) Training/prefetching only on data acceses,
3) Optionally tagging prefetches with a PC address.
#3 allows prefetchers to train off of prefetch requests in systems with
multiple cache levels and PC-based prefetchers present at multiple levels.
It also effectively allows a pipelining of prefetch requests (like in POWER4)
across multiple levels of cache hierarchy.
Improves performance on my gem5 configuration by 4.3% for SPECINT and 4.7% for SPECFP (geomean).
|
|
The patch
(1) removes the redundant writeback argument from findVictim()
(2) fixes the description of access() function
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
Fixes updating the value of size in the write merge function.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
|
|
|
|
This patch adds the basic building blocks required to support e.g. ARM
TrustZone by discerning secure and non-secure memory accesses.
|
|
Adds very basic statistics on the number of tag and data accesses within the
cache, which is important for power modelling. For the tags, simply count
the associativity of the cache each time. For the data, this depends on
whether tags and data are accessed sequentially, which is given by a new
parameter. In the parallel case, all data blocks are accessed each time, but
with sequential accesses, a single data block is accessed only on a hit.
|
|
This patch enables tracking of cache occupancy per thread along with
ages (in buckets) per cache blocks. Cache occupancy stats are
recalculated on each stat dump.
|
|
Add some values and methods to the request object to track the translation
and access latency for a request and which level of the cache hierarchy responded
to the request.
|
|
|
|
|
|
|
|
This variable causes trouble if a variable of same name is declared in a
protocol file. Hence it is being eliminated.
|
|
The first two levels (L0, L1) are private to the core, the third level (L2)is
possibly shared. The protocol supports clustered designs. For example, one
can have two sets of two cores. Each core has an L0 and L1 cache. There are
two L2 controllers where each set accesses only one of the L2 controllers.
|
|
This is because the next patch introduces a three level hierarchy.
--HG--
rename : build_opts/ALPHA_MESI_CMP_directory => build_opts/ALPHA_MESI_Two_Level
rename : build_opts/X86_MESI_CMP_directory => build_opts/X86_MESI_Two_Level
rename : configs/ruby/MESI_CMP_directory.py => configs/ruby/MESI_Two_Level.py
rename : src/mem/protocol/MESI_CMP_directory-L1cache.sm => src/mem/protocol/MESI_Two_Level-L1cache.sm
rename : src/mem/protocol/MESI_CMP_directory-L2cache.sm => src/mem/protocol/MESI_Two_Level-L2cache.sm
rename : src/mem/protocol/MESI_CMP_directory-dir.sm => src/mem/protocol/MESI_Two_Level-dir.sm
rename : src/mem/protocol/MESI_CMP_directory-dma.sm => src/mem/protocol/MESI_Two_Level-dma.sm
rename : src/mem/protocol/MESI_CMP_directory-msg.sm => src/mem/protocol/MESI_Two_Level-msg.sm
rename : src/mem/protocol/MESI_CMP_directory.slicc => src/mem/protocol/MESI_Two_Level.slicc
rename : tests/long/fs/10.linux-boot/ref/x86/linux/pc-simple-timing-ruby-MESI_CMP_directory/config.ini => tests/long/fs/10.linux-boot/ref/x86/linux/pc-simple-timing-ruby-MESI_Two_Level/config.ini
rename : tests/long/fs/10.linux-boot/ref/x86/linux/pc-simple-timing-ruby-MESI_CMP_directory/ruby.stats => tests/long/fs/10.linux-boot/ref/x86/linux/pc-simple-timing-ruby-MESI_Two_Level/ruby.stats
rename : tests/long/fs/10.linux-boot/ref/x86/linux/pc-simple-timing-ruby-MESI_CMP_directory/simerr => tests/long/fs/10.linux-boot/ref/x86/linux/pc-simple-timing-ruby-MESI_Two_Level/simerr
rename : tests/long/fs/10.linux-boot/ref/x86/linux/pc-simple-timing-ruby-MESI_CMP_directory/simout => tests/long/fs/10.linux-boot/ref/x86/linux/pc-simple-timing-ruby-MESI_Two_Level/simout
rename : tests/long/fs/10.linux-boot/ref/x86/linux/pc-simple-timing-ruby-MESI_CMP_directory/stats.txt => tests/long/fs/10.linux-boot/ref/x86/linux/pc-simple-timing-ruby-MESI_Two_Level/stats.txt
rename : tests/long/fs/10.linux-boot/ref/x86/linux/pc-simple-timing-ruby-MESI_CMP_directory/system.pc.com_1.terminal => tests/long/fs/10.linux-boot/ref/x86/linux/pc-simple-timing-ruby-MESI_Two_Level/system.pc.com_1.terminal
rename : tests/quick/se/00.hello/ref/alpha/linux/simple-timing-ruby-MESI_CMP_directory/config.ini => tests/quick/se/00.hello/ref/alpha/linux/simple-timing-ruby-MESI_Two_Level/config.ini
rename : tests/quick/se/00.hello/ref/alpha/linux/simple-timing-ruby-MESI_CMP_directory/ruby.stats => tests/quick/se/00.hello/ref/alpha/linux/simple-timing-ruby-MESI_Two_Level/ruby.stats
rename : tests/quick/se/00.hello/ref/alpha/linux/simple-timing-ruby-MESI_CMP_directory/simerr => tests/quick/se/00.hello/ref/alpha/linux/simple-timing-ruby-MESI_Two_Level/simerr
rename : tests/quick/se/00.hello/ref/alpha/linux/simple-timing-ruby-MESI_CMP_directory/simout => tests/quick/se/00.hello/ref/alpha/linux/simple-timing-ruby-MESI_Two_Level/simout
rename : tests/quick/se/00.hello/ref/alpha/linux/simple-timing-ruby-MESI_CMP_directory/stats.txt => tests/quick/se/00.hello/ref/alpha/linux/simple-timing-ruby-MESI_Two_Level/stats.txt
rename : tests/quick/se/00.hello/ref/alpha/tru64/simple-timing-ruby-MESI_CMP_directory/config.ini => tests/quick/se/00.hello/ref/alpha/tru64/simple-timing-ruby-MESI_Two_Level/config.ini
rename : tests/quick/se/00.hello/ref/alpha/tru64/simple-timing-ruby-MESI_CMP_directory/ruby.stats => tests/quick/se/00.hello/ref/alpha/tru64/simple-timing-ruby-MESI_Two_Level/ruby.stats
rename : tests/quick/se/00.hello/ref/alpha/tru64/simple-timing-ruby-MESI_CMP_directory/simerr => tests/quick/se/00.hello/ref/alpha/tru64/simple-timing-ruby-MESI_Two_Level/simerr
rename : tests/quick/se/00.hello/ref/alpha/tru64/simple-timing-ruby-MESI_CMP_directory/simout => tests/quick/se/00.hello/ref/alpha/tru64/simple-timing-ruby-MESI_Two_Level/simout
rename : tests/quick/se/00.hello/ref/alpha/tru64/simple-timing-ruby-MESI_CMP_directory/stats.txt => tests/quick/se/00.hello/ref/alpha/tru64/simple-timing-ruby-MESI_Two_Level/stats.txt
rename : tests/quick/se/50.memtest/ref/alpha/linux/memtest-ruby-MESI_CMP_directory/config.ini => tests/quick/se/50.memtest/ref/alpha/linux/memtest-ruby-MESI_Two_Level/config.ini
rename : tests/quick/se/50.memtest/ref/alpha/linux/memtest-ruby-MESI_CMP_directory/ruby.stats => tests/quick/se/50.memtest/ref/alpha/linux/memtest-ruby-MESI_Two_Level/ruby.stats
rename : tests/quick/se/50.memtest/ref/alpha/linux/memtest-ruby-MESI_CMP_directory/simerr => tests/quick/se/50.memtest/ref/alpha/linux/memtest-ruby-MESI_Two_Level/simerr
rename : tests/quick/se/50.memtest/ref/alpha/linux/memtest-ruby-MESI_CMP_directory/simout => tests/quick/se/50.memtest/ref/alpha/linux/memtest-ruby-MESI_Two_Level/simout
rename : tests/quick/se/50.memtest/ref/alpha/linux/memtest-ruby-MESI_CMP_directory/stats.txt => tests/quick/se/50.memtest/ref/alpha/linux/memtest-ruby-MESI_Two_Level/stats.txt
rename : tests/quick/se/60.rubytest/ref/alpha/linux/rubytest-ruby-MESI_CMP_directory/config.ini => tests/quick/se/60.rubytest/ref/alpha/linux/rubytest-ruby-MESI_Two_Level/config.ini
rename : tests/quick/se/60.rubytest/ref/alpha/linux/rubytest-ruby-MESI_CMP_directory/ruby.stats => tests/quick/se/60.rubytest/ref/alpha/linux/rubytest-ruby-MESI_Two_Level/ruby.stats
rename : tests/quick/se/60.rubytest/ref/alpha/linux/rubytest-ruby-MESI_CMP_directory/simerr => tests/quick/se/60.rubytest/ref/alpha/linux/rubytest-ruby-MESI_Two_Level/simerr
rename : tests/quick/se/60.rubytest/ref/alpha/linux/rubytest-ruby-MESI_CMP_directory/simout => tests/quick/se/60.rubytest/ref/alpha/linux/rubytest-ruby-MESI_Two_Level/simout
rename : tests/quick/se/60.rubytest/ref/alpha/linux/rubytest-ruby-MESI_CMP_directory/stats.txt => tests/quick/se/60.rubytest/ref/alpha/linux/rubytest-ruby-MESI_Two_Level/stats.txt
|
|
A cluster over here means a set of controllers that can be accessed only by a
certain set of cores. For example, consider a two level hierarchy. Assume
there are 4 L1 controllers (private) and 2 L2 controllers. We can have two
different hierarchies here:
a. the address space is partitioned between the two L2 controllers. Each L1
controller accesses both the L2 controllers. In this case, each L1 controller
is a cluster initself.
b. both the L2 controllers can cache any address. An L1 controller has access
to only one of the L2 controllers. In this case, each L2 controller
along with the L1 controllers that access it, form a cluster.
This patch allows for each controller to have a cluster ID, which is 0 by
default. By setting the cluster ID properly, one can instantiate hierarchies
with clusters. Note that the coherence protocol might have to be changed as
well.
|
|
|
|
This patch fixes couple of bugs in the L2 controller of the mesi cmp
directory protocol.
1. The state MT_I was transitioning to NP on receiving a clean writeback
from the L1 controller. This patch makes it inform the directory controller
about the writeback.
2. The L2 controller was sending the dirty bit to the L1 controller and the
L2 controller used writeback from the L1 controller to update the dirty bit
unconditionally. Now, the L1 controller always assumes that the incoming
data is clean. The L2 controller updates the dirty bit only when the L1
controller writes to the block.
3. Certain unused functions and events are being removed.
|
|
This patch replaces max_in_port_rank with the number of inports. The use of
max_in_port_rank was causing spurious re-builds and incorrect initialization
of variables in ruby related regression tests. This was due to the variable
value being used across threads while compiling when it was not meant to be.
Since the number of inports is state machine specific value, this problem
should get solved.
|
|
|
|
The directory controller should not have the sharer field since there is
only one level 2 cache. Anyway the field was not in use. The owner field
was being used to track the l2 cache version (in case of distributed l2) that
has the cache block under consideration. The information is not required
since the version of the level 2 cache can be obtained from a subset of the
address bits.
|
|
This patch fixes a number of stats accounting issues in the DRAM
controller. Most importantly, it separates the system interface and
DRAM interface so that it is clearer what the actual DRAM bandwidth
(and consequently utilisation) is.
|
|
This patch corrects the LPDDR3 page size, which was set too low.
|
|
This patch adds stats which are used for offline power calculation
from the 'Micron Power Calculator' spreadsheet.
|