Age | Commit message (Collapse) | Author |
|
This patch essentially rolls back 10518:30e3715c9405 to make RubyPort the
parent class of DMASequencer. It removes redundant code and restores some
features which were lost when directly inheriting from MemObject. For
example,
DMASequencer can now communicate to other devices using PIO, which is useful
for memmory-mapped communication between multiple DMADevices.
|
|
Avoid being overly conservative in clearing load locks in the cache,
and allow writes to the line if they are from the same context. This
is in line with ALPHA and ARM.
|
|
This patch introduces the ability of making the coherent crossbar the
point of coherency. If so, the crossbar does not forward packets where
a cache with ownership has already committed to responding, and also
does not forward any coherency-related packets that are not intended
for a downstream memory controller. Thus, invalidations and upgrades
are turned around in the crossbar, and the memory controller only sees
normal reads and writes.
In addition this patch moves the express snoop promotion of a packet
to the crossbar, thus allowing the downstream cache to check the
express snoop flag (as it should) for bypassing any blocking, rather
than relying on whether a cache is responding or not.
|
|
Adopt the same flow as in timing mode, where the caches on the path to
memory get to keep the line (if present), and we use the
responderHadWritable flag to determine if we need to forward the
(invalidating) packet or not.
|
|
This patch unifies the snoop handling in case of hitting writebacks
with how we handle snoops hitting in the tags. As a result, we end up
using the same optimisation as the normal snoops, where we inform the
downstream cache if we encounter a line in Modified (writable and
dirty) state, which enables us to avoid sending out express snoops to
invalidate any Shared copies of the line. A few regressions
consequently change, as some transactions are sunk higher up in the
cache hierarchy.
|
|
This patch changes how the cache determines if snoops should be
forwarded from the memory side to the CPU side. Instead of having a
parameter, the cache now looks at the port connected on the CPU side,
and if it is a snooping port, then snoops are forwarded. Less error
prone, and less parameters to worry about.
The patch also tidies up the CPU classes to ensure that their I-side
port is not snooping by removing overrides to the snoop request
handler, such that snoop requests will panic via the default
MasterPort implement
|
|
Result of running 'hg m5style --skip-all --fix-control -a' to get
rid of '== true' comparisons, plus trivial manual edits to get
rid of '== false'/'== False' comparisons.
Left a couple of explicit comparisons in where they didn't seem
unreasonable:
invalid boolean comparison in src/arch/mips/interrupts.cc:155
>> DPRINTF(Interrupt, "Interrupts OnCpuTimerINterrupt(tc) == true\n");<<
invalid boolean comparison in src/unittest/unittest.hh:110
>> "EXPECT_FALSE(" #expr ")", (expr) == false)<<
|
|
Result of running 'hg m5style --skip-all --fix-control -a'.
|
|
Result of running 'hg m5style --skip-all --fix-white -a'.
|
|
|
|
|
|
|
|
This patch adds support for write-combining in ruby.
|
|
mem: support for gpu-style RMWs in ruby
This patch adds support for GPU-style read-modify-write (RMW) operations in
ruby. Such atomic operations are traditionally executed at the memory controller
(instead of through an L1 cache using cache-line locking).
Currently, this patch works by propogating operation functors through the memory
system.
|
|
This patch add support to mark memory requests/packets with attributes defined
in HSA, such as memory order and scope.
|
|
The new Packet::setRaw() method incorrectly still contained
an htog() conversion. As a result, calls to the old set()
method (now defined as setRaw(htog(v))) underwent two htog
conversions, which breaks things when htog() is not a no-op.
Interestingly the only test that caught this was a SPARC
boot test, where an IsaFake device with a non-zero return
value was getting swapped twice resulting in a register
getting loaded with 0x100000000000000 instead of 1.
(Good reason for keeping SPARC around, perhaps?)
|
|
Make best use of the compiler, and enable -Wextra as well as
-Wall. There are a few issues that had to be resolved, but they are
all trivial.
|
|
Some of the DPRINTFs added to the classic cache in cset 45df88079f04,
while useful to those unfamiliar with the cache code, end up being
noise when you're familiar with the code but are trying to debug tricky
protocol issues. (Particularly getting two messages from each cache
as it receives a snoop request then declares that there was no match.)
This patch introduces a CacheVerbose debug flag, and moves a subset of
the added DPRINTFs into that category, so that Cache by itself returns
to being a more succinct summary of cache activity.
Also added a CacheAll compound flag to turn on all the cache-related
debug flags (other than CacheTags, which you *really* have to want badly
to turn it on, IMO).
|
|
This patch removes the NeedsWritable flag for all responses, as it is
really only the request that needs a writable response. The response,
on the other hand, should in these cases always provide the line in a
writable state, as indicated by the hasSharers flag not being set.
When we send requests that has NeedsWritable set, the response will
always have the hasSharers flag not set. Additionally, there are cases
where the request did not have NeedsWritable set, and we still get a
writable response with the hasSharers flag not set. This never happens
on snoops, but is used by downstream caches to pass ownership
upstream.
As part of this patch, the affected response types are updated, and
the snoop filter is similarly modified to check only the hasSharers
flag (as it should). A sanity check is also added to the packet class,
asserting that we never look at the NeedsWritable flag for responses.
No regressions are affected.
|
|
This patch looks at the request and response command to determine if
either actually has any data payload, and if not, we do not allocate
any space for packet data.
The only tricky case is where the command type is changed as part of
the MSHR functionality. In these cases where the original packet had
no data, but the new packet does, we need to explicitly call
allocate().
|
|
This patch ensures we do not respond with a Modified (dirty and
writable) line if the request is uncacheable, and that the cache
responding retains the line without modifying the state (even if
responding).
|
|
This patch changes the name of a bunch of packet flags and MSHR member
functions and variables to make the coherency protocol easier to
understand. In addition the patch adds and updates lots of
descriptions, explicitly spelling out assumptions.
The following name changes are made:
* the packet memInhibit flag is renamed to cacheResponding
* the packet sharedAsserted flag is renamed to hasSharers
* the packet NeedsExclusive attribute is renamed to NeedsWritable
* the packet isSupplyExclusive is renamed responderHadWritable
* the MSHR pendingDirty is renamed to pendingModified
The cache states, Modified, Owned, Exclusive, Shared are also called
out in the cache and MSHR code to make it easier to understand.
|
|
This patch is imported from reviewboard patch 2551 by Nilay.
This patch moves from a dynamically defined MachineType to a statically
defined one. The need for this patch was felt since a dynamically defined
type prevents us from having types for which no machine definition may
exist.
The following changes have been made:
i. each machine definition now uses a type from the MachineType enumeration
instead of any random identifier. This required changing the grammar and the
*.sm files.
ii. MachineType enumeration defined statically in RubySlicc_Exports.sm.
* * *
normal protocol fixes for nilay's parser machine type fix
|
|
This patch is imported from reviewboard patch 2550 by Nilay.
It was possible to specify multiple machine types with a single state machine.
This seems unnecessary and is being removed.
|
|
Add a sanity check to make it explicit that we currently do not allow
an I/O coherent agent to directly issue writes into the coherent part
of the memory system (it has to go via a cache, and get transformed
into a read ex, upgrade or invalidation).
|
|
This patch removes the unused squash function from the MSHR queue, and
the associated (and also unused) threadNum member from the MSHR.
|
|
The checks made before sending out a HardPFReq were unecessarily
complex, and checked for cases that never occur. This patch
tidies it up.
|
|
This patch changes how the cache tracks which snoops are forwarded,
and which ones are created locally. Previously the identification was
based on an empty sender state of a specific class, but this method
fails to distinguish which cache actually attached the sender
state. Instead we use the same mechanism as the crossbar, and keep
track of the requests that have outstanding snoops.
|
|
This patch addresses a bug in how the cache attached the MSHR as a
sender state. Rather than overwriting any existing sender state it now
pushes a new one. The handling of upward snoops is also clarified.
|
|
This patch fixes a corner case in the deferred snoop handling, where
requests ended up being used by multiple packets with different
lifetimes, and inadvertently got deleted while they were still in use.
|
|
Add support for acquire and release requests. These synchronization operations
are commonly supported by several modern instruction sets.
|
|
This patch allows the ruby random tester to use ruby ports that may only
support instr or data requests. This patch is similar to a previous changeset
(8932:1b2c17565ac8) that was unfortunately broken by subsequent changesets.
This current patch implements the support in a more straight-forward way.
Since retries are now tested when running the ruby random tester, this patch
splits up the retry and drain check behavior so that RubyPort children, such
as the GPUCoalescer, can perform those operations correctly without having to
duplicate code. Finally, the patch also includes better DPRINTFs for
debugging the tester.
|
|
|
|
This patch adds support to optionally capture the virtual address and asid
for load/store instructions in the elastic traces. If they are present in
the traces, Trace CPU will set those fields of the request during replay.
|
|
This patch adds the instruction sequence number to the request and provides a
request constructor that accepts a sequence number for initialization.
|
|
Fix a number of unintentional insertions of 'const'.
|
|
Make clang when compiling on OSX.
|
|
|
|
misc changes now that Address has become Addr including int to address util
function
|
|
The BoolVec typedef and insertion operator overload function simplify usage of
vectors of type bool
|
|
the sanity check, while generally useful for exposing memory system bugs,
may be spurious with respect to GPU workloads, which may generate many more
requests than typical CPU workloads. the large number of requests generated
by the GPU may cause the req/resp queues to back up, thus queueing more than
100 packets.
|
|
This patch adds the necessary commands and cache functionality to
allow clean writebacks. This functionality is crucial, especially when
having exclusive (victim) caches. For example, if read-only L1
instruction caches are not sending clean writebacks, there will never
be any spills from the L1 to the L2. At the moment the cache model
defaults to not sending clean writebacks, and this should possibly be
re-evaluated.
The implementation of clean writebacks relies on a new packet command
WritebackClean, which acts much like a Writeback (renamed
WritebackDirty), and also much like a CleanEvict. On eviction of a
clean block the cache either sends a clean evict, or a clean
writeback, and if any copies are still cached upstream the clean
evict/writeback is dropped. Similarly, if a clean evict/writeback
reaches a cache where there are outstanding MSHRs for the block, the
packet is dropped. In the typical case though, the clean writeback
allocates a block in the downstream cache, and marks it writable if
the evicted block was writable.
The patch changes the O3_ARM_v7a L1 cache configuration and the
default L1 caches in config/common/Caches.py
|
|
This patch adds a parameter to control the cache clusivity, that is if
the cache is mostly inclusive or exclusive. At the moment there is no
intention to support strict policies, and thus the options are: 1)
mostly inclusive, or 2) mostly exclusive.
The choice of policy guides the behaviuor on a cache fill, and a new
helper function, allocOnFill, is created to encapsulate the decision
making process. For the timing mode, the decision is annotated on the
MSHR on sending out the downstream packet, and in atomic we directly
pass the decision to handleFill. We (ab)use the tempBlock in cases
where we are not allocating on fill, leaving the rest of the cache
unaffected. Simple and effective.
This patch also makes it more explicit that multiple caches are
allowed to consider a block writable (this is the case
also before this patch). That is, for a mostly inclusive cache,
multiple caches upstream may also consider the block exclusive. The
caches considering the block writable/exclusive all appear along the
same path to memory, and from a coherency protocol point of view it
works due to the fact that we always snoop upwards in zero time before
querying any downstream cache.
Note that this patch does not introduce clean writebacks. Thus, for
clean lines we are essentially removing a cache level if it is made
mostly exclusive. For example, lines from the read-only L1 instruction
cache or table-walker cache are always clean, and simply get dropped
rather than being passed to the L2. If the L2 is mostly exclusive and
does not allocate on fill it will thus never hold the line. A follow
on patch adds the clean writebacks.
The patch changes the L2 of the O3_ARM_v7a CPU configuration to be
mostly exclusive (and stats are affected accordingly).
|
|
This patch optimises the handling of writebacks and clean evictions
when using a snoop filter. Instead of snooping into the caches to
determine if the block is cached or not, simply set the status based
on the snoop-filter result.
|
|
Instead of conservatively enforcing order for all packets, which may
negatively impact the simulated-system performance, this patch updates
the packet queue such that it only applies the restriction if there
are already packets with the same address in the queue.
The basic need for the order enforcement is due to coherency
interactions where requests/responses to the same cache line must not
over-take each other. We rely on the fact that any packet that needs
order enforcement will have a block-aligned address. Thus, there is no
need for the queue to know about the cacheline size.
|
|
This patch enforces insertion order transmission of packets on the
response path in the cache. Note that the logic to enforce order is
already present in the packet queue, this patch simply turns it on for
queues in the response path.
Without this patch, there are corner cases where a request-response is
faster than a response-response forwarded through the cache. This
violation of queuing order causes problems in the snoop filter leaving
it with inaccurate information. This causes assert failures in the
snoop filter later on.
A follow on patch relaxes the order enforcement in the packet queue to
limit the performance impact.
|
|
This patch updates the I/O devices, bridge and simple memory to take
the packet header and payload delay into account in their latency
calculations. In all cases we add the header delay, i.e. the
accumulated pipeline delay of any crossbars, and the payload delay
needed for deserialisation of any payload.
Due to the additional unknown latency contribution, the packet queue
of the simple memory is changed to use insertion sorting based on the
time stamp. Moreover, since the memory hands out exclusive (non
shared) responses, we also need to ensure ordering for reads to the
same address.
|
|
This patch aligns how the memory-system slaves, i.e. the various
memory controllers and the bridge, identify and deal with sinking of
inhibited packets that are only useful within the coherent part of the
memory system.
In the future we could shift the onus to the crossbar, and add a
parameter "is_point_of_coherence" that would allow it to sink the
aforementioned packets.
|
|
This patch changes the CleanEvict command type to not be considered a
write. Initially it was made a zero-sized write to match the writeback
command, but as things developed it became clear that it causes more
problems than it solves. For example, the memory modules (and bridge)
should not consider the CleanEvict as a write, but instead discard
it. With this patch it will be neither a read, nor write, and as it
does not need a response the slave will simply sink it.
|
|
This patch unifies how we deal with delayed packet deletion, where the
receiving slave is responsible for deleting the packet, but the
sending agent (e.g. a cache) is still relying on the pointer until the
call to sendTimingReq completes. Previously we used a mix of a
deletion vector and a construct using unique_ptr. With this patch we
ensure all slaves use the latter approach.
|