Age | Commit message (Collapse) | Author |
|
The code for Set class was written under the assumption that
std::numeric_limits<long>::digits returns the number of bits used for
data type long, which was presumed to be either 32 or 64. But return value
is actually one less, that is, it is either 31 or 63. The value is now
being incremented by 1 so as to correctly set it.
|
|
The access permissions for the directory entries are not being set correctly.
This is because pointers are not used for handling directory entries.
function. get and set functions for access permissions have been added to the
Controller state machine. The changePermission() function provided by the
AbstractEntry and AbstractCacheEntry classes has been exposed to SLICC
code once again. The set_permission() functionality has been removed.
NOTE: Each protocol will have to define these get and set functions in order
to compile successfully.
|
|
|
|
Currently, the machine name is appended before any of the functions
defined with in the sm files. This is not necessary and it also
means that these functions cannot be used outside the sm files.
This patch does away with the prefixes. Note that the generated
C++ files in which the code for these functions is present are
still named such that the machine name is the prefix.
|
|
|
|
|
|
|
|
|
|
Re-enabling implicit parenting (see previous patch) causes current
Ruby config scripts to create some strange hierarchies and generate
several warnings. This patch makes three general changes to address
these issues.
1. The order of object creation in the ruby config files makes the L1
caches children of the sequencer rather than the controller; these
config ciles are rewritten to assign the L1 caches to the
controller first.
2. The assignment of the sequencer list to system.ruby.cpu_ruby_ports
causes the sequencers to be children of system.ruby, generating
warnings because they are already parented to their respective
controllers. Changing this attribute to _cpu_ruby_ports fixes this
because the leading underscore means this is now treated as a plain
Python attribute rather than a child assignment. As a result, the
configuration hierarchy changes such that, e.g.,
system.ruby.cpu_ruby_ports0 becomes system.l1_cntrl0.sequencer.
3. In the topology classes, the routers become children of some random
internal link node rather than direct children of the topology.
The topology classes are rewritten to assign the routers to the
topology object first.
|
|
The virtual channels within "response" vnets are made buffers_per_data_vc
deep (default=4), while virtual channels within other vnets are made
buffers_per_ctrl_vc deep (default = 1). This is for accurate power estimates.
|
|
Forgot to add this to MI_example in my previous patch.
|
|
Identifying response vnets versus other vnets will allow garnet to
determine which vnets will carry data packets, and which will carry
ctrl packets, and use appropriate buffer sizes (since data packets are larger
than ctrl packets). This in turn allows the orion power model to accurately
estimate buffer power.
|
|
Renamed (message) class to vnet for consistency with rest of ruby.
Moved some parameters specific to fixed/flexible garnet networks into their
corresponding py files.
|
|
|
|
The RubyMemory flag wasnt used in the code, creating large gaps in trace output. Replace cprintfs w/dprintfs
using RubyMemory in memory controller. DPRINTF also deprecate the usage of the setDebug() pure virtual
function in the AbstractMemoryOrCache Class as well the m_debug/cprintf functions in MemoryControl.hh/cc
|
|
|
|
Therefore all links by default are 16 bytes wide and thus work with Garnet's
uniform link bandwidth assumption.
|
|
|
|
The simple network's endpoint bandwidth value is used to adjust the overall
bandwidth of the network. Specifically, the ration between endpoint bandwidth
and the MESSAGE_SIZE_MULTIPLIER determines the increase. By setting the value
to 1000, that means the bandwdith factor specified in the links translates to
the link bandwidth in bytes. Previously, it was increasing that value by 10.
This patch will likely require a reset of the ruby regression tester stats.
|
|
|
|
Moved the buffer_size, endpoint_bandwidth, and adaptive_routing params out of
the top-level parent network object and to only those networks that actually
use those parameters.
|
|
This patch ensures that both Garnet and the simple networks use the bw value
specified in the topology. To do so, the patch generalizes the specification
of bw for basic links. This value is then translated to the specific value
used by the simple and Garnet networks. Since Garent does not support
non-uniformed link bandwidth, the patch also adds a check to ensure all bws are
equal.
--HG--
rename : src/mem/ruby/network/BasicLink.cc => src/mem/ruby/network/simple/SimpleLink.cc
rename : src/mem/ruby/network/BasicLink.hh => src/mem/ruby/network/simple/SimpleLink.hh
rename : src/mem/ruby/network/BasicLink.py => src/mem/ruby/network/simple/SimpleLink.py
|
|
This patch converts links and switches from second class simobjects that were
virtually ignored by the networks (both simple and Garnet) to first class
simobjects that directly correspond to c++ ojbects manipulated by the
topology and network classes. This is especially true for Garnet, where the
links and switches directly correspond to specific C++ objects.
By making this change, many aspects of the Topology class were simplified.
--HG--
rename : src/mem/ruby/network/Network.cc => src/mem/ruby/network/BasicLink.cc
rename : src/mem/ruby/network/Network.hh => src/mem/ruby/network/BasicLink.hh
rename : src/mem/ruby/network/Network.cc => src/mem/ruby/network/garnet/fixed-pipeline/GarnetLink_d.cc
rename : src/mem/ruby/network/Network.hh => src/mem/ruby/network/garnet/fixed-pipeline/GarnetLink_d.hh
rename : src/mem/ruby/network/garnet/fixed-pipeline/GarnetNetwork_d.py => src/mem/ruby/network/garnet/fixed-pipeline/GarnetLink_d.py
rename : src/mem/ruby/network/garnet/fixed-pipeline/GarnetNetwork_d.py => src/mem/ruby/network/garnet/fixed-pipeline/GarnetRouter_d.py
rename : src/mem/ruby/network/Network.cc => src/mem/ruby/network/garnet/flexible-pipeline/GarnetLink.cc
rename : src/mem/ruby/network/Network.hh => src/mem/ruby/network/garnet/flexible-pipeline/GarnetLink.hh
rename : src/mem/ruby/network/garnet/fixed-pipeline/GarnetNetwork_d.py => src/mem/ruby/network/garnet/flexible-pipeline/GarnetLink.py
rename : src/mem/ruby/network/garnet/fixed-pipeline/GarnetNetwork_d.py => src/mem/ruby/network/garnet/flexible-pipeline/GarnetRouter.py
|
|
|
|
Moved the Topology class to the top network directory because it is shared by
both the simple and Garnet networks.
--HG--
rename : src/mem/ruby/network/simple/Topology.cc => src/mem/ruby/network/Topology.cc
rename : src/mem/ruby/network/simple/Topology.hh => src/mem/ruby/network/Topology.hh
|
|
|
|
|
|
|
|
At the same time, rename the trace flags to debug flags since they
have broader usage than simply tracing. This means that
--trace-flags is now --debug-flags and --trace-help is now --debug-help
|
|
|
|
|
|
Fixed an error reguarding DMA for uninprocessor systems. Basically removed an
overly agressive optimization that lead to inconsistent state between the
cache and the directory.
|
|
This function duplicates the functionality of allocate() exactly, except that it does not return
a return value. In protocols where you just want to allocate a block
but do not want that block to be your implicitly passed cache_entry, use this function.
Otherwise, SLICC will complain if you do not consume the pointer returned by allocate(),
and if you do a dummy assignment Entry foo := cache.allocate(address), the C++
compiler will complain of an unused variable. This is kind of a hack to get around
those issues, but suggestions welcome.
|
|
Before this changeset, all local variables of type Entry and TBE were considered
to be pointers, but an immediate use of said variables would not be automatically
deferenced in SLICC-generated code. Instead, deferences occurred when such
variables were passed to functions, and were automatically dereferenced in
the bodies of the functions (e.g. the implicitly passed cache_entry).
This is a more general way to do it, which leaves in place the
assumption that parameters to functions and local variables of type AbstractCacheEntry
and TBE are always pointers, but instead of dereferencing to access member variables
on a contextual basis, the dereferencing automatically occurs on a type basis at the
moment a member is being accessed. So, now, things you can do that you couldn't before
include:
Entry foo := getCacheEntry(address);
cache_entry.DataBlk := foo.DataBlk;
or
cache_entry.DataBlk := getCacheEntry(address).DataBlk;
or even
cache_entry.DataBlk := static_cast(Entry, pointer, cache.lookup(address)).DataBlk;
|
|
This is a substitute for MessageBuffers between controllers where you don't
want messages to actually go through the Network, because requests/responses can
always get reordered wrt to one another (even if you turn off Randomization and turn on Ordered)
because you are, after all, going through a network with contention. For systems where you model
multiple controllers that are very tightly coupled and do not actually go through a network,
it is a pain to have to write a coherence protocol to account for mixed up request/response orderings
despite the fact that it's completely unrealistic. This is *not* meant as a substitute for real
MessageBuffers when messages do in fact go over a network.
|
|
|
|
It is useful for Ruby to understand from whence request packets came.
This has all request packets going into Ruby pass the contextId value, if
it exists. This supplants the old libruby proc_id value passed around in
all the Messages, so I've also removed the unused unsigned proc_id; member
generated by SLICC for all Message types.
|
|
|
|
|
|
The goal of the patch is to do away with the CacheMsg class currently in use
in coherence protocols. In place of CacheMsg, the RubyRequest class will used.
This class is already present in slicc_interface/RubyRequest.hh. In fact,
objects of class CacheMsg are generated by copying values from a RubyRequest
object.
|
|
allocation and power estimations etc
|
|
|
|
The tester code is in testers/networktest.
The tester can be invoked by configs/example/ruby_network_test.py.
A dummy coherence protocol called Network_test is also addded for network-only simulations and testing. The protocol takes in messages from the tester and just pushes them into the network in the appropriate vnet, without storing any state.
|
|
I had recently committed a patch that removed the WakeUp*.py files from the
slicc/ast directory. I had forgotten to remove the import calls for these
files from slicc/ast/__init__.py. This resulted in error while running
regressions on zizzer. This patch does the needful.
|
|
This patch converts CacheRequestType to RubyRequestType so that both the
protocol dependent and independent code makes use of the same request type.
|
|
This patch converts AccessModeType to RubyAccessMode so that both the
protocol dependent and independent code uses the same access mode.
|
|
|
|
This patch fixes the problem where Ruby would fail to call sendRetry on ports
after it nacked the port. This patch is particularly helpful for bursty dma
requests which often include several packets.
|
|
|
|
|