Age | Commit message (Collapse) | Author |
|
|
|
removes the optimization that forwards an exclusive copy to a requester on a
read, only for the i-cache. this optimization isn't necessary because we
typically won't be writing to the i-cache.
|
|
This class simply cleans up the code by making use of the EventWrapper
convenience class to schedule the sendEvent in the bridge ports.
|
|
This patch changes the simple memory to have a single slave port
rather than a vector port. The simple memory makes no attempts at
modelling the contention between multiple ports, and any such
multiplexing and demultiplexing could be done in a bus (or crossbar)
outside the memory controller. This scenario also matches with the
ongoing work on a SimpleDRAM model, which will be a single-ported
single-channel controller that can be used in conjunction with a bus
(or crossbar) to create a multi-port multi-channel controller.
There are only very few regressions that make use of the vector port,
and these are all for functional accesses only. To facilitate these
cases, memtest and memtest-ruby have been updated to also have a
"functional" bus to perform the (de)multiplexing of the functional
memory accesses.
|
|
This patch removes printConfig() functions from all structures in Ruby.
Most of the information is already part of config.ini, and where ever it
is not, it would become in due course.
|
|
|
|
|
|
ruby: fixed fatal print statement
|
|
ruby: fixed msgptr print call
|
|
|
|
This patch models a cache as separate tag and data arrays. The patch exposes
the banked array as another resource that is checked by SLICC before a
transition is allowed to execute. This is similar to how TBE entries and slots
in output ports are modeled.
|
|
Updates to Ruby to support statistics counting of cache accesses. This feature
serves multiple purposes beyond simple stats collection. It provides the
foundation for ruby to model the cache tag and data arrays as physical
resources, as well as provide the necessary input data for McPAT power
modeling.
|
|
|
|
|
|
Instead of just passing a list of controllers to the makeTopology function
in src/mem/ruby/network/topologies/<Topo>.py we pass in a function pointer
which knows how to make the topology, possibly with some extra state set
in the configs/ruby/<protocol>.py file. Thus, we can move all of the files
from network/topologies to configs/topologies. A new class BaseTopology
is added which all topologies in configs/topologies must inheirit from and
follow its API.
--HG--
rename : src/mem/ruby/network/topologies/Crossbar.py => configs/topologies/Crossbar.py
rename : src/mem/ruby/network/topologies/Mesh.py => configs/topologies/Mesh.py
rename : src/mem/ruby/network/topologies/MeshDirCorners.py => configs/topologies/MeshDirCorners.py
rename : src/mem/ruby/network/topologies/Pt2Pt.py => configs/topologies/Pt2Pt.py
rename : src/mem/ruby/network/topologies/Torus.py => configs/topologies/Torus.py
|
|
This patch makes the address-range related members const. The change
is trivial and merely ensures that they can be called on a const
memory.
|
|
This patch makes the queue implementation in the SimpleTimingPort
private to avoid confusion with the protected member queue in the
QueuedSlavePort. The SimpleTimingPort provides the queue_impl to the
QueuedSlavePort and it can be accessed via the reference in the base
class. The use of the member name queue is thus no longer overloaded.
|
|
This patch is a first step to align the port names used in the Python
world and the C++ world. Ultimately it serves to make the use of
config.json together with output from the simulation easier, including
post-processing of statistics.
Most notably, the CPU, cache, and bus is addressed in this patch, and
there might be other ports that should be updated accordingly. The
dash name separator has also been replaced with a "." which is what is
used to concatenate the names in python, and a separation is made
between the master and slave port in the bus.
|
|
This patch changes the default bus width to a more sensible 8 bytes
(64 bits), which is in line with most on-chip buses. Although there
are cases where a wider or narrower bus is useful, the 8 bytes is a
good compromise to serve as the default.
This patch changes essentially all statistics, and will be bundled
with the outstanding changes to the bus.
|
|
This patch splits the existing buses into multiple layers. The
non-coherent bus is split into a request and a response layer, and the
coherent bus adds an additional layer for the snoop responses. The
layer is modified to be templatised on the port type, such that the
different layers can have retryLists with either master or slave
ports. This patch also removes the dynamic cast from the retry, as
previously promised when moving the recvRetry from the port base class
to the master/slave port respectively.
Overall, the split bus more closely reflects any modern on-chip bus
and should be at step in the right direction. From this point, it
would be reasonable straight forward to add separate layers (and thus
contention points and arbitration) for each port and thus create a
true crossbar.
The regressions all produce the correct output, but have varying
degrees of changes to their statistics. A separate patch will be
pushed with the updates to the reference statistics.
|
|
This patch moves all flow control, arbitration and state information
into a bus layer. The layer is thus responsible for all the state
transitions, and for keeping hold of the retry list. Consequently the
layer is also responsible for the draining.
With this change, the non-coherent and coherent bus are given a single
layer to avoid changing any temporal behaviour, but the patch opens up
for adding more layers.
|
|
This patch adds a state enum and member variable in the bus, tracking
the bus state, thus eliminating the need for tickNextIdle and inRetry,
and fixing an issue that allowed the bus to be occupied by multiple
packets at once (hopefully it also makes it easier to understand the
code).
The bus, in its current form, uses tickNextIdle and inRetry to keep
track of the state of the bus. However, it only updates tickNextIdle
_after_ forwarding a packet using sendTiming, and the result is that
the bus is still seen as idle, and a module that receives the packet
and starts transmitting new packets in zero time will still see the
bus as idle (and this is done by a number of DMA devices). The issue
can also be seen in isOccupied where the bus calls reschedule on an
event instead of schedule.
This patch addresses the problem by marking the bus as _not_ idle
already by the time we conclude that the bus is not occupied and we
will deal with the packet.
As a result of not allowing multiple packets to occupy the bus, some
regressions have slight changes in their statistics. A separate patch
updates these accordingly.
Further ahead, a follow-on patch will introduce a separate state
variable for request/responses/snoop responses, and thus implement a
split request/response bus with separate flow control for the
different message types (even further ahead it will introduce a
multi-layer bus).
|
|
This patch makes getAddrRanges const throughout the code base. There
is no reason why it should not be, and making it const prevents adding
any unintentional side-effects.
|
|
This patch adds getAddrRanges to the master port, and thus avoids
going through getSlavePort to be able to ask the slave. Similar to the
previous patch that added isSnooping to the SlavePort, this patch aims
to introduce an additional level of hierarchy in the ports (base port
being protocol-agnostic) and getSlave/MasterPort will return port
pointers to these base classes.
The function is named getAddrRanges also on the master port, but does
nothing besides asking the connected slave port. The slave port, as
before, has to provide an implementation and actually produce a list
of address ranges. The initial design used the name getSlaveAddrRanges
for the new function, but the more verbose name was later changed.
|
|
This patch adds isSnooping to the slave port, and thus avoids going
through getMasterPort to be able to ask the master. Over the course of
the next few patches, all getMasterPort/getSlavePort in Port and
MemObject are to be protocol agnostic, and the snooping is part of the
protocol layer.
The function is already present on the master port, where it is
implemented by the module itself, e.g. a cache. On the slave side, it
is merely asking the connected master port. The same name is used by
both functions despite their difference in behaviour. The initial
design used isMasterSnooping on the slave port side, but the more
verbose function name was later changed.
|
|
This patch is the last part of moving all protocol-related
functionality out of the Port base class. All the send/recv functions
are already moved, and the retry (which still governs all the timing
transport functions) is the only part that remained in the base class.
The only point where this currently causes a bit of inconvenience is
in the bus where the retry list is global and holds Port pointers (not
Master/SlavePort). This is about to change with the split into a
request/response bus and will soon be removed anyway.
The patch has no impact on any regressions.
|
|
This patch is the result of static analysis identifying a number of
memory leaks. The leaks are all benign as they are a result of not
deallocating memory in the desctructor. The fix still has value as it
removes false positives in the static analysis.
|
|
The LRU policy always evicted the least recently touched way, even if it
contained valid data and another way was invalid, as can happen if a block has
been invalidated by coherance. This can result in caches never warming up even
though they are replacing blocks. This modifies the LRU policy to move blocks
to LRU position on invalidation.
|
|
This patch merely changes several methods to be virtual in order to enable
non/coherent buses sub-classes.
|
|
The assertion was applied to the wrong packet.
This patch fixes the issue rerported by Xiang Jiang on the gem5-dev mailing list.
|
|
Currently when multiple CPUs perform a load-linked/store-conditional sequence,
the loads all create a list of reservations which is then scanned when the
stores occur. A reservation matching the context and address of the store is
sought, BUT all reservations matching the address are also erased at this point.
The upshot is that a store-conditional will remove all reservations even if the
store itself does not succeed. A livelock was observed using 7-8 CPUs where a
thread would erase the reservations of other threads, not succeed, loop and put
its own reservation in again only to have it blown by another thread that
unsuccessfully now tries to store-conditional -- no forward progress was made,
hanging the system.
The correct way to do this is to only blow a reservation when a store
(conditional or not) actually /occurs/ to its address. One thread always wins
(the one that does the store-conditional first).
|
|
|
|
This patch is a temporary fix until Andreas' four-phase patches
get reviewed and committed. Removing FastAlloc seems to have exposed
an issue which previously was reasonable rare in which packets are freed
before the sending cache is done with them. This change puts incoming packets
no a pendingDelete queue which are deleted at the start of the next call and
thus breaks the dependency between when the caller returns true and when the
packet is actually used by the sending cache.
Running valgrind on a multi-core linux boot and the memtester results in no
valgrind warnings.
|
|
Added per-master stats (similar to cache stats) to physmem.
|
|
While FastAlloc provides a small performance increase (~1.5%) over regular malloc it isn't thread safe.
After removing FastAlloc and using tcmalloc I've seen a performance increase of 12% over libc malloc
when running twolf for ARM.
|
|
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
|
|
This patch merely remove the Packet* from the isOccupied member
function. Historically this was used to check if the packet was an
express snoop, but this is now done outside this function (where
relevant).
|
|
The main aim of this patch is to arrive at a suitable port interface
for vector ports, including both the packet and the port id. This
patch changes the bus transport functions
(recvFunctional/Atomic/Timing) to require a PortId parameter
indicating the source port. Previously this information was passed by
setting the source field of the packet, and this is only required in
the case of a timing request.
With this patch, the use of the source and destination field is also
more restrictive, as they are only needed for timing accesses. The
modifications to these fields for atomic snoops is now removed
entirely, also making minor modifications to the cache.
|
|
This patch removes the Packet::NodeID typedef and unifies it with the
Port::PortId. The src and dest fields in the packet are used to hold a
port id (e.g. in the bus), and thus the two should actually be the
same.
The typedef PortID is now global (in base/types.hh) and aligned with
the ThreadID in terms of capitalisation and naming of the
InvalidPortID constant.
Before this patch, two flags were used for valid destination and
source, rather than relying on a named value (InvalidPortID), and
this is now redundant, as the src and dest field themselves are
sufficient to tell whether the current value is a valid port
identifier or not. Consequently, the VALID_SRC and VALID_DST are
removed.
As part of the cleaning up, a number of int parameters and local
variables are updated to use PortID.
Note that Ruby still has its own NodeID typedef. Furthermore, the
MemObject getMaster/SlavePort still has an int idx parameter with a
default value of -1 which should eventually change to PortID idx =
InvalidPortID.
|
|
This patch updates the comments for the src and dest fields to reflect
their actual use. Due to a number of patches (e.g. removing the
Broadcast flag), the old comments are no longer indicative of the
current usage.
|
|
This patch splits the PacketBuffer class into a RequestState and a
DeferredRequest and DeferredResponse. Only the requests need a
SenderState, and the deferred requests and responses only need an
associated point in time for the request and the response queue.
Besides the cleaning up, the goal is to simplify the transition to a
new port handshake, and with these changes, the two packet queues are
starting to look very similar to the generic packet queue, but
currently they do a few unique things relating to the NACK and
counting of requests/responses that the packet queue cannot be
conveniently used. This will be addressed in a later patch.
|
|
This patch removes the declaration of doWriteback as there is no
implementation for this member function.
|
|
This patch removes unused commands and attributes from the packet to
avoid any confusion. It is part of an effort to clear up how and where
different commands and attributes are used.
|
|
|
|
The scheduling of the deadlock check event was being done incorrectly as the
clock was not being multiplied, so as to convert the time into ticks. This
patch removes that bug.
|
|
|
|
|
|
|
|
|
|
|