Age | Commit message (Collapse) | Author |
|
Starting with version 3, scons imposes using the print function instead
of the print statement in code it processes. To get things building
again, this change moves all python code within gem5 to use the
function version. Another change by another author separately made this
same change to the site_tools and site_init.py files.
Change-Id: I2de7dc3b1be756baad6f60574c47c8b7e80ea3b0
Reviewed-on: https://gem5-review.googlesource.com/8761
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Maintainer: Gabe Black <gabeblack@google.com>
|
|
The current implementation of reference counting for PyEvents only
partially works. The native object is currently kept alive while it is
in the event queue. However, if the Python object goes out of scope,
the Python side of this object is garbage collected which leaves a
"dangling" native object. This results in confusing error messages
where PyBind is unable to find the Python implementation of an event
when it is triggered.
Implement reference counting using the generalized reference counting
API instead.
Change-Id: I4e8e04abc4f61dff238d718065f5371e73b38ab3
Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-by: Curtis Dunham <curtis.dunham@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/3222
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
|
|
Add a helper function, m5.event.create(), to create events from
Python. This function takes a callable Python object (e.g., a
function) as an argument and optionally a priority as a keyword
argument. This function was accidentally dropped from the public API
when switching to PyBind.
Change-Id: Icbd0e392d9506934ec2c9f541199aa35c1c2df8c
Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-by: Curtis Dunham <curtis.dunham@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/3220
Reviewed-by: Gabe Black <gabeblack@google.com>
|
|
Use the PyBind11 wrapping infrastructure instead of SWIG to generate
wrappers for functionality that needs to be exported to Python. This
has several benefits:
* PyBind11 can be redistributed with gem5, which means that we have
full control of the version used. This avoid a large number of
hard-to-debug SWIG issues we have seen in the past.
* PyBind11 doesn't rely on a custom C++ parser, instead it relies on
wrappers being explicitly declared in C++. The leads to slightly
more boiler-plate code in manually created wrappers, but doesn't
doesn't increase the overall code size. A big benefit is that this
avoids strange compilation errors when SWIG doesn't understand
modern language features.
* Unlike SWIG, there is no risk that the wrapper code incorporates
incorrect type casts (this has happened on numerous occasions in
the past) since these will result in compile-time errors.
As a part of this change, the mechanism to define exported methods has
been redesigned slightly. New methods can be exported either by
declaring them in the SimObject declaration and decorating them with
the cxxMethod decorator or by adding an instance of
PyBindMethod/PyBindProperty to the cxx_exports class variable. The
decorator has the added benefit of making it possible to add a
docstring and naming the method's parameters.
The new wrappers have the following known issues:
* Global events can't be memory managed correctly. This was the
case in SWIG as well.
Change-Id: I88c5a95b6cf6c32fa9e1ad31dfc08b2e8199a763
Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-by: Andreas Hansson <andreas.hansson@arm.com>
Reviewed-by: Andrew Bardsley <andrew.bardsley@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/2231
Reviewed-by: Tony Gutierrez <anthony.gutierrez@amd.com>
Reviewed-by: Pierre-Yves PĂ©neau <pierre-yves.peneau@lirmm.fr>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
|
|
Swig wrappers for native objects currently share the _m5.internal name
space with Python code. This is undesirable if we ever want to switch
from Swig to some other framework for native binding (e.g., PyBind11
or Boost::Python). This changeset moves all of such wrappers to the
_m5 namespace, which is now reserved for native code.
Change-Id: I2d2bc12dbc05b57b7c5a75f072e08124413d77f3
Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-by: Curtis Dunham <curtis.dunham@arm.com>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
|
|
This patch adds support for simulating with multiple threads, each of
which operates on an event queue. Each sim object specifies which eventq
is would like to be on. A custom barrier implementation is being added
using which eventqs synchronize.
The patch was tested in two different configurations:
1. ruby_network_test.py: in this simulation L1 cache controllers receive
requests from the cpu. The requests are replied to immediately without
any communication taking place with any other level.
2. twosys-tsunami-simple-atomic: this configuration simulates a client-server
system which are connected by an ethernet link.
We still lack the ability to communicate using message buffers or ports. But
other things like simulation start and end, synchronizing after every quantum
are working.
Committed by: Nilay Vaish
|
|
Also, while we're at it, remember that priorities are in the Event class
and add a disable method to disable tracing.
|
|
We need to add a reference when an object is put on the C++ queue, and remove
a reference when the object is removed from the queue. This was not happening
before and caused a memory problem.
|
|
|
|
Since the early days of M5, an event needed to know which event queue
it was on, and that data was required at the time of construction of
the event object. In the future parallelized M5, this sort of
requirement does not work well since the proper event queue will not
always be known at the time of construction of an event. Now, events
are created, and the EventQueue itself has the schedule function,
e.g. eventq->schedule(event, when). To simplify the syntax, I created
a class called EventManager which holds a pointer to an EventQueue and
provides the schedule interface that is a proxy for the EventQueue.
The intent is that objects that frequently schedule events can be
derived from EventManager and then they have the schedule interface.
SimObject and Port are examples of objects that will become
EventManagers. The end result is that any SimObject can just call
schedule(event, when) and it will just call that SimObject's
eventq->schedule function. Of course, some objects may have more than
one EventQueue, so this interface might not be perfect for those, but
they should be relatively few.
|
|
directly configured by python. Move stuff from root.(cc|hh) to
core.(cc|hh) since it really belogs there now.
In the process, simplify how ticks are used in the python code.
--HG--
extra : convert_revision : cf82ee1ea20f9343924f30bacc2a38d4edee8df3
|