Age | Commit message (Collapse) | Author |
|
This patch adds support for simulating with multiple threads, each of
which operates on an event queue. Each sim object specifies which eventq
is would like to be on. A custom barrier implementation is being added
using which eventqs synchronize.
The patch was tested in two different configurations:
1. ruby_network_test.py: in this simulation L1 cache controllers receive
requests from the cpu. The requests are replied to immediately without
any communication taking place with any other level.
2. twosys-tsunami-simple-atomic: this configuration simulates a client-server
system which are connected by an ethernet link.
We still lack the ability to communicate using message buffers or ports. But
other things like simulation start and end, synchronizing after every quantum
are working.
Committed by: Nilay Vaish
|
|
This patch makes it possible to once again build gem5 without any
ISA. The main purpose is to enable work around the interconnect and
memory system without having to build any CPU models or device models.
The regress script is updated to include the NULL ISA target. Currently
no regressions make use of it, but all the testers could (and perhaps
should) transition to it.
--HG--
rename : build_opts/NOISA => build_opts/NULL
rename : src/arch/noisa/SConsopts => src/arch/null/SConsopts
rename : src/arch/noisa/cpu_dummy.hh => src/arch/null/cpu_dummy.hh
rename : src/cpu/intr_control.cc => src/cpu/intr_control_noisa.cc
|
|
This patch enables warnings for missing declarations. To avoid issues
with SWIG-generated code, the warning is only applied to non-SWIG
code.
|
|
Tick was not correctly wrapped for the stats system, and therefore it was not
possible to configure the stats dumping from the python scripts without
defining Ticks as long long. This patch fixes the wrapping of Tick by copying
the typemap of uint64_t to Tick.
|
|
This patch adds a _curTick variable to an eventq. This variable is updated
whenever an event is serviced in function serviceOne(), or all events upto
a particular time are processed in function serviceEvents(). This change
helps when there are eventqs that do not make use of curTick for scheduling
events.
|
|
This changeset adds a SWIG interface for the Serializable class, which
fixes a warning when compiling the SWIG interface for the event
queue. Currently, the only method exported is the name() method.
|
|
This patch moves the draining interface from SimObject to a separate
class that can be used by any object needing draining. However,
objects not visible to the Python code (i.e., objects not deriving
from SimObject) still depend on their parents informing them when to
drain. This patch also gets rid of the CountedDrainEvent (which isn't
really an event) and replaces it with a DrainManager.
|
|
This patch adds an additional level of ports in the inheritance
hierarchy, separating out the protocol-specific and protocl-agnostic
parts. All the functionality related to the binding of ports is now
confined to use BaseMaster/BaseSlavePorts, and all the
protocol-specific parts stay in the Master/SlavePort. In the future it
will be possible to add other protocol-specific implementations.
The functions used in the binding of ports, i.e. getMaster/SlavePort
now use the base classes, and the index parameter is updated to use
the PortID typedef with the symbolic InvalidPortID as the default.
|
|
This patch adds a function, periodicStatDump(long long period), which will dump
and reset the statistics every period. This function is designed to be called
from the python configuration scripts. This allows the periodic stats dumping to
be configured more easilly at run time.
The period is currently specified as a long long as there are issues passing
Tick into the C++ from the python as they have conflicting definitions. If the
period is less than curTick, the first occurance occurs at curTick. If the
period is set to 0, then the event is descheduled and the stats are not
periodically dumped.
Due to issues when resumung from a checkpoint, the StatDump event must be moved
forward such that it occues AFTER the current tick. As the function is called
from the python, the event is scheduled before the system resumes from the
checkpoint. Therefore, the event is moved using the updateEvents() function.
This is called from simulate.py once the system has resumed from the checkpoint.
NOTE: It should be noted that this is a fairly temporary patch which re-adds the
capability to extract temporal information from the communication monitors. It
should not be used at the same time as anything that relies on dumping the
statistics based on in simulation events i.e. a context switch.
|
|
This patch takes the final plunge and transitions from the templated
Range class to the more specific AddrRange. In doing so it changes the
obvious Range<Addr> to AddrRange, and also bumps the range_map to be
AddrRangeMap.
In addition to the obvious changes, including the removal of redundant
includes, this patch also does some house keeping in preparing for the
introduction of address interleaving support in the ranges. The Range
class is also stripped of all the functionality that is never used.
--HG--
rename : src/base/range.hh => src/base/addr_range.hh
rename : src/base/range_map.hh => src/base/addr_range_map.hh
|
|
While FastAlloc provides a small performance increase (~1.5%) over regular malloc it isn't thread safe.
After removing FastAlloc and using tcmalloc I've seen a performance increase of 12% over libc malloc
when running twolf for ARM.
|
|
This mechanism is useful for dumping output that is correlated with stats
dumping, but isn't tracked by the gem5 statistics.
|
|
Track the point in the initialization where statistics have been registered.
After this point registering new masterIds can no longer work as some
SimObjects may have sized stats vectors based on the previous value. If someone
tries to register a masterId after this point the simulator executes fatal().
|
|
This patch introduces the notion of a master and slave port in the C++
code, thus bringing the previous classification from the Python
classes into the corresponding simulation objects and memory objects.
The patch enables us to classify behaviours into the two bins and add
assumptions and enfore compliance, also simplifying the two
interfaces. As a starting point, isSnooping is confined to a master
port, and getAddrRanges to slave ports. More of these specilisations
are to come in later patches.
The getPort function is not getMasterPort and getSlavePort, and
returns a port reference rather than a pointer as NULL would never be
a valid return value. The default implementation of these two
functions is placed in MemObject, and calls fatal.
The one drawback with this specific patch is that it requires some
code duplication, e.g. QueuedPort becomes QueuedMasterPort and
QueuedSlavePort, and BusPort becomes BusMasterPort and BusSlavePort
(avoiding multiple inheritance). With the later introduction of the
port interfaces, moving the functionality outside the port itself, a
lot of the duplicated code will disappear again.
|
|
|
|
|
|
And by "everything" I mean all the quick regressions.
|
|
Replace the (broken as of previous changeset) swig_objdecl() method
that allowed/forced you to substitute a whole new C++ struct
definition for SWIG to wrap with a set of export_method* hooks
that let you just declare a set of C++ methods (or other declarations)
that get inserted in the auto-generated struct.
Restore the System get/setMemoryMode methods, and use this mechanism
to specialize SimObject as well, eliminating teh need for sim_object.i.
Needed bits of sim_object.i are moved to the new pyobject.i.
Also sucked a little SimObject specialization into cxx_param_decl()
allowing us to get rid of src/sim/sim_object_params.hh. Now the
generation and wrapping of the base SimObject param struct is more
in line with how derived objects are handled.
--HG--
rename : src/python/swig/sim_object.i => src/python/swig/pyobject.i
|
|
|
|
we can add it back within python in some future changeset
|
|
|
|
Build a python list and dict of all stats and expose flags properly.
--HG--
rename : src/python/m5/stats.py => src/python/m5/stats/__init__.py
|
|
order of %includes since they matter for this case
|
|
At the same time, rename the trace flags to debug flags since they
have broader usage than simply tracing. This means that
--trace-flags is now --debug-flags and --trace-help is now --debug-help
|
|
|
|
Thanks to swig this was interfering with the standard Python
random module. The only function in that module was seed(),
which erroneously called srand48(). Moved the function to
m5.internal.core, renamed it seedRandom(), and made it call
random_mt.init() instead.
|
|
This step makes it easy to replace the accessor functions
(which still access a global variable) with ones that access
per-thread curTick values.
|
|
This follows the style rules and is more descriptive.
|
|
Ran all the source files through 'perl -pi' with this script:
s|\s*(};?\s*)?/\*\s*(end\s*)?namespace\s*(\S+)\s*\*/(\s*})?|} // namespace $3|;
s|\s*};?\s*//\s*(end\s*)?namespace\s*(\S+)\s*|} // namespace $2\n|;
s|\s*};?\s*//\s*(\S+)\s*namespace\s*|} // namespace $1\n|;
Also did a little manual editing on some of the arch/*/isa_traits.hh files
and src/SConscript.
|
|
|
|
|
|
New parameter forms are:
IP address in the format "a.b.c.d" where a-d are from decimal 0 to 255.
IP address with netmask which is an IP followed by "/n" where n is a netmask
length in bits from decimal 0 to 32 or by "/e.f.g.h" where e-h are from
decimal 0 to 255 and which is all 1 bits followed by all 0 bits when
represented in binary. These can also be specified as an integral IP and
netmask passed in separately.
IP address with port which is an IP followed by ":p" where p is a port index
from decimal 0 to 65535. These can also be specified as an integral IP and
port value passed in separately.
|
|
|
|
kill params.i and create a separate .i for each object (param, enums, etc.)
|
|
It doesn't appear to be necessary and it is somewhat odd. I'm pretty
sure that the package parameter to %module does whatever this might
have been before. It's necessary in future revisions anyway.
|
|
Replace direct call to unserialize() on each SimObject with a pair of
calls for better control over initialization in both ckpt and non-ckpt
cases.
If restoring from a checkpoint, loadState(ckpt) is called on each
SimObject. The default implementation simply calls unserialize() if
there is a corresponding checkpoint section, so we get backward
compatibility for existing objects. However, objects can override
loadState() to get other behaviors, e.g., doing other programmed
initializations after unserialize(), or complaining if no checkpoint
section is found. (Note that the default warning for a missing
checkpoint section is now gone.)
If not restoring from a checkpoint, we call the new initState() method
on each SimObject instead. This provides a hook for state
initializations that are only required when *not* restoring from a
checkpoint.
Given this new framework, do some cleanup of LiveProcess subclasses
and X86System, which were (in some cases) emulating initState()
behavior in startup via a local flag or (in other cases) erroneously
doing initializations in startup() that clobbered state loaded earlier
by unserialize().
|
|
|
|
There used to be a reason to have StartupCallback
be a separate object, but not any more. Now
it's just confusing.
|
|
Before this change, some versions of swig would cause PythonEvent to be
derived from object instead of Event
|
|
|
|
--HG--
rename : src/sim/host.hh => src/base/types.hh
|
|
|
|
|
|
Enable more or less takes the place of check, but also allows stats to
do some other configuration. Prepare moves all of the code that readies
a stat for dumping into a separate function in preparation for supporting
serialization of certain pieces of statistics data.
While we're at it, clean up the visitor code and some of the python code.
|
|
|
|
We need to add a reference when an object is put on the C++ queue, and remove
a reference when the object is removed from the queue. This was not happening
before and caused a memory problem.
|
|
which does not expose a setCount method to Python.
Signed-off By: Ali Saidi
|
|
The major thrust of this change is to limit the amount of code
duplication surrounding the code for these functions. This code also
adds two new message types called info and hack. Info is meant to be
less harsh than warn so people don't get confused and start thinking
that the simulator is broken. Hack is a way for people to add runtime
messages indicating that the simulator just executed a code "hack"
that should probably be fixed. The benefit of knowing about these
code hacks is that it will let people know what sorts of inaccuracies
or potential bugs might be entering their experiments. Finally, I've
added some flags to turn on and off these message types so command
line options can change them.
|
|
Since the early days of M5, an event needed to know which event queue
it was on, and that data was required at the time of construction of
the event object. In the future parallelized M5, this sort of
requirement does not work well since the proper event queue will not
always be known at the time of construction of an event. Now, events
are created, and the EventQueue itself has the schedule function,
e.g. eventq->schedule(event, when). To simplify the syntax, I created
a class called EventManager which holds a pointer to an EventQueue and
provides the schedule interface that is a proxy for the EventQueue.
The intent is that objects that frequently schedule events can be
derived from EventManager and then they have the schedule interface.
SimObject and Port are examples of objects that will become
EventManagers. The end result is that any SimObject can just call
schedule(event, when) and it will just call that SimObject's
eventq->schedule function. Of course, some objects may have more than
one EventQueue, so this interface might not be perfect for those, but
they should be relatively few.
|
|
(except for warn()) and new -r/-e options make it
not worth fixing.
|