summaryrefslogtreecommitdiff
path: root/src/sim/probe
AgeCommit message (Collapse)Author
2017-09-25mem: Record the request master ID in the PacketInfo structure.Gabe Black
That can be recorded in a packet trace. Change-Id: I3813ab4ea5aadeb40b355ff01f10e8ecab2bb790 Reviewed-on: https://soc-sim-internal-review.googlesource.com/3482 Reviewed-by: Rahul Thakur <rjthakur@google.com> Reviewed-on: https://gem5-review.googlesource.com/4780 Reviewed-by: Nikos Nikoleris <nikos.nikoleris@arm.com> Maintainer: Nikos Nikoleris <nikos.nikoleris@arm.com>
2016-11-09style: [patch 3/22] reduce include dependencies in some headersBrandon Potter
Used cppclean to help identify useless includes and removed them. This involved erroneously included headers, but also cases where forward declarations could have been used rather than a full include.
2016-11-09style: [patch 1/22] use /r/3648/ to reorganize includesBrandon Potter
2016-04-07mem: Add Program Counter to MemTraceProbeVictor Garcia
2015-09-25mem: Add PacketInfo to be used for packet probe pointsAndreas Hansson
This patch fixes a use-after-delete issue in the packet probe points by adding a PacketInfo struct to retain the key fields before passing the packet onwards. We want to probe the packet after it is successfully sent, but by that time the fields may be modified, and the packet may even be deleted. Amazingly enough the issue has gone undetected for months, and only recently popped up in our regressions.
2015-08-04mem: Add probe support to the CommMonitorAndreas Sandberg
This changeset adds a standardized probe point type to monitor packets in the memory system and adds two probe points to the CommMonitor class. These probe points enable monitoring of successfully delivered requests and successfully delivered responses. Memory system probe listeners should use the BaseMemProbe base class to provide a unified configuration interface and reuse listener registration code. Unlike the ProbeListenerObject class, the BaseMemProbe allows objects to be wired to multiple ProbeManager instances as long as they use the same probe point name.
2014-10-16sim: Add typedefs for PMU probe pointsAndreas Sandberg
In order to show make PMU probe points usable across different PMU implementations, we want a common probe interface. This patch the namespace ProbePoins that contains typedefs for probe points that are shared between multiple SimObjects. It also adds typedefs for the PMU probe interface.
2014-09-09sim: Automatically unregister probe listenersAndreas Sandberg
The ProbeListener base class automatically registers itself with a probe manager. Currently, the class does not unregister a itself when it is destroyed, which makes removing probes listeners somewhat cumbersome. This patch adds an automatic call to manager->removeListener in the ProbeListener destructor, which solves the problem.
2014-03-07scons: Fixes uninitialized warnings issued by clangMitch Hayenga
Small fixes to appease recent clang versions.
2014-01-24base: add support for probe points and common probesMatt Horsnell
The probe patch is motivated by the desire to move analytical and trace code away from functional code. This is achieved by the probe interface which is essentially a glorified observer model. What this means to users: * add a probe point and a "notify" call at the source of an "event" * add an isolated module, that is being used to carry out *your* analysis (e.g. generate a trace) * register that module as a probe listener Note: an example is given for reference in src/cpu/o3/simple_trace.[hh|cc] and src/cpu/SimpleTrace.py What is happening under the hood: * every SimObject maintains has a ProbeManager. * during initialization (src/python/m5/simulate.py) first regProbePoints and the regProbeListeners is called on each SimObject. this hooks up the probe point notify calls with the listeners. FAQs: Why did you develop probe points: * to remove trace, stats gathering, analytical code out of the functional code. * the belief that probes could be generically useful. What is a probe point: * a probe point is used to notify upon a given event (e.g. cpu commits an instruction) What is a probe listener: * a class that handles whatever the user wishes to do when they are notified about an event. What can be passed on notify: * probe points are templates, and so the user can generate probes that pass any type of argument (by const reference) to a listener. What relationships can be generated (1:1, 1:N, N:M etc): * there isn't a restriction. You can hook probe points and listeners up in a 1:1, 1:N, N:M relationship. They become useful when a number of modules listen to the same probe points. The idea being that you can add a small number of probes into the source code and develop a larger number of useful analysis modules that use information passed by the probes. Can you give examples: * adding a probe point to the cpu's commit method allows you to build a trace module (outputting assembler), you could re-use this to gather instruction distribution (arithmetic, load/store, conditional, control flow) stats. Why is the probe interface currently restricted to passing a const reference: * the desire, initially at least, is to allow an interface to observe functionality, but not to change functionality. * of course this can be subverted by const-casting. What is the performance impact of adding probes: * when nothing is actively listening to the probes they should have a relatively minor impact. Profiling has suggested even with a large number of probes (60) the impact of them (when not active) is very minimal (<1%).