summaryrefslogtreecommitdiff
path: root/src/sim/ticked_object.cc
AgeCommit message (Collapse)Author
2017-07-12sim, gdb: Refactor some Event subclasses into lambdasSean Wilson
Change-Id: If3e4329204f27eda96b50ec6ac279ebc6ef23d99 Signed-off-by: Sean Wilson <spwilson2@wisc.edu> Reviewed-on: https://gem5-review.googlesource.com/3921 Reviewed-by: Jason Lowe-Power <jason@lowepower.com> Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com> Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
2017-07-10sim: Fix clashing stat names in TickedObject and TickedJose Marinho
Change tickCycles numCycles stat name to totalTickCycles os as not to clash with the name of the tickCycles stat of the same class. Declared the params passed to the TickedObject constructer as const. Call ClockedObject::regStats() from the TickedObject::regStats to ensure the correct initialization of the base class (ClockedObject) stats Change-Id: I6cf5bbe10fa27f2ad0e31d9f70ec3be47fe41455 Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com> Reviewed-on: https://gem5-review.googlesource.com/3964 Reviewed-by: Jason Lowe-Power <jason@lowepower.com> Maintainer: Jason Lowe-Power <jason@lowepower.com>
2016-11-09style: [patch 3/22] reduce include dependencies in some headersBrandon Potter
Used cppclean to help identify useless includes and removed them. This involved erroneously included headers, but also cases where forward declarations could have been used rather than a full include.
2015-07-07sim: Refactor the serialization base classAndreas Sandberg
Objects that are can be serialized are supposed to inherit from the Serializable class. This class is meant to provide a unified API for such objects. However, so far it has mainly been used by SimObjects due to some fundamental design limitations. This changeset redesigns to the serialization interface to make it more generic and hide the underlying checkpoint storage. Specifically: * Add a set of APIs to serialize into a subsection of the current object. Previously, objects that needed this functionality would use ad-hoc solutions using nameOut() and section name generation. In the new world, an object that implements the interface has the methods serializeSection() and unserializeSection() that serialize into a named /subsection/ of the current object. Calling serialize() serializes an object into the current section. * Move the name() method from Serializable to SimObject as it is no longer needed for serialization. The fully qualified section name is generated by the main serialization code on the fly as objects serialize sub-objects. * Add a scoped ScopedCheckpointSection helper class. Some objects need to serialize data structures, that are not deriving from Serializable, into subsections. Previously, this was done using nameOut() and manual section name generation. To simplify this, this changeset introduces a ScopedCheckpointSection() helper class. When this class is instantiated, it adds a new /subsection/ and subsequent serialization calls during the lifetime of this helper class happen inside this section (or a subsection in case of nested sections). * The serialize() call is now const which prevents accidental state manipulation during serialization. Objects that rely on modifying state can use the serializeOld() call instead. The default implementation simply calls serialize(). Note: The old-style calls need to be explicitly called using the serializeOld()/serializeSectionOld() style APIs. These are used by default when serializing SimObjects. * Both the input and output checkpoints now use their own named types. This hides underlying checkpoint implementation from objects that need checkpointing and makes it easier to change the underlying checkpoint storage code.
2014-09-03sim: Fix checkpoint restore for TickedAndrew Bardsley
This patch makes restoring the 'lastStopped' value for Ticked-containing objects (including MinorCPU) optional so that Ticked-containing objects can be restored from non-Ticked-containing objects (such as AtomicSimpleCPU).
2014-07-23cpu: `Minor' in-order CPU modelAndrew Bardsley
This patch contains a new CPU model named `Minor'. Minor models a four stage in-order execution pipeline (fetch lines, decompose into macroops, decompose macroops into microops, execute). The model was developed to support the ARM ISA but should be fixable to support all the remaining gem5 ISAs. It currently also works for Alpha, and regressions are included for ARM and Alpha (including Linux boot). Documentation for the model can be found in src/doc/inside-minor.doxygen and its internal operations can be visualised using the Minorview tool utils/minorview.py. Minor was designed to be fairly simple and not to engage in a lot of instruction annotation. As such, it currently has very few gathered stats and may lack other gem5 features. Minor is faster than the o3 model. Sample results: Benchmark | Stat host_seconds (s) ---------------+--------v--------v-------- (on ARM, opt) | simple | o3 | minor | timing | timing | timing ---------------+--------+--------+-------- 10.linux-boot | 169 | 1883 | 1075 10.mcf | 117 | 967 | 491 20.parser | 668 | 6315 | 3146 30.eon | 542 | 3413 | 2414 40.perlbmk | 2339 | 20905 | 11532 50.vortex | 122 | 1094 | 588 60.bzip2 | 2045 | 18061 | 9662 70.twolf | 207 | 2736 | 1036