summaryrefslogtreecommitdiff
path: root/src/sim
AgeCommit message (Collapse)Author
2011-01-10Root: Get rid of unnecessary includes in root.cc.Gabe Black
2011-01-07Replace curTick global variable with accessor functions.Steve Reinhardt
This step makes it easy to replace the accessor functions (which still access a global variable) with ones that access per-thread curTick values.
2011-01-07stats: rename StatEvent() function to schedStatEvent().Steve Reinhardt
This follows the style rules and is more descriptive.
2011-01-07sim: clean up CountedDrainEvent slightly.Steve Reinhardt
There's no reason for it to derive from SimLoopExitEvent. This whole drain thing needs to be redone eventually, but this is a stopgap to make later changes to SimLoopExitEvent feasible.
2011-01-07sim: delete unused CheckSwapEvent code.Steve Reinhardt
There's no way to even create one of these anymore.
2011-01-07pseudoinst: get rid of mainEventQueue references.Steve Reinhardt
Avoid direct references to mainEventQueue in pseudo-insts by indirecting through associated CPU object. Made exitSimLoop() more flexible to enable some of these.
2011-01-03Make commenting on close namespace brackets consistent.Steve Reinhardt
Ran all the source files through 'perl -pi' with this script: s|\s*(};?\s*)?/\*\s*(end\s*)?namespace\s*(\S+)\s*\*/(\s*})?|} // namespace $3|; s|\s*};?\s*//\s*(end\s*)?namespace\s*(\S+)\s*|} // namespace $2\n|; s|\s*};?\s*//\s*(\S+)\s*namespace\s*|} // namespace $1\n|; Also did a little manual editing on some of the arch/*/isa_traits.hh files and src/SConscript.
2010-12-07ARM: Support switchover with hardware table walkersAli Saidi
2010-11-19SE: Fix simulating more than 4GB of RAM in SE modeAli Saidi
This change removes some dead code in PhysicalMemory, uses a 64 bit type for the page pointer in System (instead of 32 bit) and cleans up some style.
2010-11-19SCons: Support building without an ISAAli Saidi
2010-11-08ARM: Add checkpointing supportAli Saidi
2010-11-08sim: Use forward declarations for ports.Ali Saidi
Virtual ports need TLB data which means anything touching a file in the arch directory rebuilds any file that includes system.hh which in everything.
2010-10-31ISA,CPU,etc: Create an ISA defined PC type that abstracts out ISA behaviors.Gabe Black
This change is a low level and pervasive reorganization of how PCs are managed in M5. Back when Alpha was the only ISA, there were only 2 PCs to worry about, the PC and the NPC, and the lsb of the PC signaled whether or not you were in PAL mode. As other ISAs were added, we had to add an NNPC, micro PC and next micropc, x86 and ARM introduced variable length instruction sets, and ARM started to keep track of mode bits in the PC. Each CPU model handled PCs in its own custom way that needed to be updated individually to handle the new dimensions of variability, or, in the case of ARMs mode-bit-in-the-pc hack, the complexity could be hidden in the ISA at the ISA implementation's expense. Areas like the branch predictor hadn't been updated to handle branch delay slots or micropcs, and it turns out that had introduced a significant (10s of percent) performance bug in SPARC and to a lesser extend MIPS. Rather than perpetuate the problem by reworking O3 again to handle the PC features needed by x86, this change was introduced to rework PC handling in a more modular, transparent, and hopefully efficient way. PC type: Rather than having the superset of all possible elements of PC state declared in each of the CPU models, each ISA defines its own PCState type which has exactly the elements it needs. A cross product of canned PCState classes are defined in the new "generic" ISA directory for ISAs with/without delay slots and microcode. These are either typedef-ed or subclassed by each ISA. To read or write this structure through a *Context, you use the new pcState() accessor which reads or writes depending on whether it has an argument. If you just want the address of the current or next instruction or the current micro PC, you can get those through read-only accessors on either the PCState type or the *Contexts. These are instAddr(), nextInstAddr(), and microPC(). Note the move away from readPC. That name is ambiguous since it's not clear whether or not it should be the actual address to fetch from, or if it should have extra bits in it like the PAL mode bit. Each class is free to define its own functions to get at whatever values it needs however it needs to to be used in ISA specific code. Eventually Alpha's PAL mode bit could be moved out of the PC and into a separate field like ARM. These types can be reset to a particular pc (where npc = pc + sizeof(MachInst), nnpc = npc + sizeof(MachInst), upc = 0, nupc = 1 as appropriate), printed, serialized, and compared. There is a branching() function which encapsulates code in the CPU models that checked if an instruction branched or not. Exactly what that means in the context of branch delay slots which can skip an instruction when not taken is ambiguous, and ideally this function and its uses can be eliminated. PCStates also generally know how to advance themselves in various ways depending on if they point at an instruction, a microop, or the last microop of a macroop. More on that later. Ideally, accessing all the PCs at once when setting them will improve performance of M5 even though more data needs to be moved around. This is because often all the PCs need to be manipulated together, and by getting them all at once you avoid multiple function calls. Also, the PCs of a particular thread will have spatial locality in the cache. Previously they were grouped by element in arrays which spread out accesses. Advancing the PC: The PCs were previously managed entirely by the CPU which had to know about PC semantics, try to figure out which dimension to increment the PC in, what to set NPC/NNPC, etc. These decisions are best left to the ISA in conjunction with the PC type itself. Because most of the information about how to increment the PC (mainly what type of instruction it refers to) is contained in the instruction object, a new advancePC virtual function was added to the StaticInst class. Subclasses provide an implementation that moves around the right element of the PC with a minimal amount of decision making. In ISAs like Alpha, the instructions always simply assign NPC to PC without having to worry about micropcs, nnpcs, etc. The added cost of a virtual function call should be outweighed by not having to figure out as much about what to do with the PCs and mucking around with the extra elements. One drawback of making the StaticInsts advance the PC is that you have to actually have one to advance the PC. This would, superficially, seem to require decoding an instruction before fetch could advance. This is, as far as I can tell, realistic. fetch would advance through memory addresses, not PCs, perhaps predicting new memory addresses using existing ones. More sophisticated decisions about control flow would be made later on, after the instruction was decoded, and handed back to fetch. If branching needs to happen, some amount of decoding needs to happen to see that it's a branch, what the target is, etc. This could get a little more complicated if that gets done by the predecoder, but I'm choosing to ignore that for now. Variable length instructions: To handle variable length instructions in x86 and ARM, the predecoder now takes in the current PC by reference to the getExtMachInst function. It can modify the PC however it needs to (by setting NPC to be the PC + instruction length, for instance). This could be improved since the CPU doesn't know if the PC was modified and always has to write it back. ISA parser: To support the new API, all PC related operand types were removed from the parser and replaced with a PCState type. There are two warts on this implementation. First, as with all the other operand types, the PCState still has to have a valid operand type even though it doesn't use it. Second, using syntax like PCS.npc(target) doesn't work for two reasons, this looks like the syntax for operand type overriding, and the parser can't figure out if you're reading or writing. Instructions that use the PCS operand (which I've consistently called it) need to first read it into a local variable, manipulate it, and then write it back out. Return address stack: The return address stack needed a little extra help because, in the presence of branch delay slots, it has to merge together elements of the return PC and the call PC. To handle that, a buildRetPC utility function was added. There are basically only two versions in all the ISAs, but it didn't seem short enough to put into the generic ISA directory. Also, the branch predictor code in O3 and InOrder were adjusted so that they always store the PC of the actual call instruction in the RAS, not the next PC. If the call instruction is a microop, the next PC refers to the next microop in the same macroop which is probably not desirable. The buildRetPC function advances the PC intelligently to the next macroop (in an ISA specific way) so that that case works. Change in stats: There were no change in stats except in MIPS and SPARC in the O3 model. MIPS runs in about 9% fewer ticks. SPARC runs with 30%-50% fewer ticks, which could likely be improved further by setting call/return instruction flags and taking advantage of the RAS. TODO: Add != operators to the PCState classes, defined trivially to be !(a==b). Smooth out places where PCs are split apart, passed around, and put back together later. I think this might happen in SPARC's fault code. Add ISA specific constructors that allow setting PC elements without calling a bunch of accessors. Try to eliminate the need for the branching() function. Factor out Alpha's PAL mode pc bit into a separate flag field, and eliminate places where it's blindly masked out or tested in the PC.
2010-10-15GetArgument: Rework getArgument so that X86_FS compiles again.Gabe Black
When no size is specified for an argument, push the decision about what size to use into the ISA by passing a size of -1.
2010-10-01Debug: Implement getArgument() and function skipping for ARM.Ali Saidi
In the process make add skipFuction() to handle isa specific function skipping instead of ifdefs and other ugliness. For almost all ABIs, 64 bit arguments can only start in even registers. Size is now passed to getArgument() so that 32 bit systems can make decisions about register selection for 64 bit arguments. The number argument is now passed by reference because getArgument() will need to change it based on the size of the argument and the current argument number. For ARM, if the argument number is odd and a 64-bit register is requested the number must first be incremented to because all 64 bit arguments are passed in an even argument register. Then the number will be incremented again to access both halves of the argument.
2010-09-14CPU: Trim unnecessary includes from some common files.Gabe Black
This reduces the scope of those includes and makes it less likely for there to be a dependency loop. This also moves the hashing functions associated with ExtMachInst objects to be with the ExtMachInst definitions and out of utility.hh.
2010-09-13Faults: Pass the StaticInst involved, if any, to a Fault's invoke method.Gabe Black
Also move the "Fault" reference counted pointer type into a separate file, sim/fault.hh. It would be better to name this less similarly to sim/faults.hh to reduce confusion, but fault.hh matches the name of the type. We could change Fault to FaultPtr to match other pointer types, and then changing the name of the file would make more sense.
2010-09-09init: don't build files that centralize python and swig codeNathan Binkert
Instead of putting all object files into m5/object/__init__.py, interrogate the importer to find out what should be imported. Instead of creating a single file that lists all of the embedded python modules, use static object construction to put those objects onto a list. Do something similar for embedded swig (C++) code.
2010-09-09scons: use code_formatter wherever we can in the build systemNathan Binkert
2010-08-25Tracing: Fix trace so 'Predicated False' doesn't show upAli Saidi
2010-08-23Faults: Get rid of some commented out code in sim/faults.hh.Gabe Black
2010-08-23CPU: Make Exec trace to print predication result (if false) for memory ↵Min Kyu Jeong
instructions
2010-08-23Loader: Make the load address mask be a parameter of the system rather than ↵Ali Saidi
a constant. This allows one two different OS requirements for the same ISA to be handled. Some OSes are compiled for a virtual address and need to be loaded into physical memory that starts at address 0, while other bare metal tools generate images that start at address 0.
2010-08-23Compiler: Fixes for GCC 4.5.Ali Saidi
2010-08-17misc: add some AMD copyright noticesSteve Reinhardt
Meant to add these with the previous batch of csets.
2010-08-17sim: revamp unserialization procedureSteve Reinhardt
Replace direct call to unserialize() on each SimObject with a pair of calls for better control over initialization in both ckpt and non-ckpt cases. If restoring from a checkpoint, loadState(ckpt) is called on each SimObject. The default implementation simply calls unserialize() if there is a corresponding checkpoint section, so we get backward compatibility for existing objects. However, objects can override loadState() to get other behaviors, e.g., doing other programmed initializations after unserialize(), or complaining if no checkpoint section is found. (Note that the default warning for a missing checkpoint section is now gone.) If not restoring from a checkpoint, we call the new initState() method on each SimObject instead. This provides a hook for state initializations that are only required when *not* restoring from a checkpoint. Given this new framework, do some cleanup of LiveProcess subclasses and X86System, which were (in some cases) emulating initState() behavior in startup via a local flag or (in other cases) erroneously doing initializations in startup() that clobbered state loaded earlier by unserialize().
2010-08-17sim: move iterating over SimObjects into Python.Steve Reinhardt
2010-08-17sim: make Python Root object a singletonSteve Reinhardt
Enforce that the Python Root SimObject is instantiated only once. The C++ Root object already panics if more than one is created. This change avoids the need to track what the root object is, since it's available from Root.getInstance() (if it exists). It's now redundant to have the user pass the root object to functions like instantiate(), checkpoint(), and restoreCheckpoint(), so that arg is gone. Users who use configs/common/Simulate.py should not notice.
2010-07-22Syscall: Don't close the simulator's standard file descriptors.Timothy M. Jones
2010-07-21python: Add mechanism to override code compiled into the exectuableNathan Binkert
If the user sets the environment variable M5_OVERRIDE_PY_SOURCE to True, then imports that would normally find python code compiled into the executable will instead first check in the absolute location where the code was found during the build of the executable. This only works for files in the src (or extras) directories, not automatically generated files. This is a developer feature!
2010-07-05checkpointing: another small overload fixSteve Reinhardt
On Nate's advice, overload 'char' as well as 'signed char' and 'unsigned char'.
2010-07-05sim: fold StartupCallback into SimObjectSteve Reinhardt
There used to be a reason to have StartupCallback be a separate object, but not any more. Now it's just confusing.
2010-07-05checkpointing: minor cleanup.Steve Reinhardt
Move some static checkpoint stuff into the Checkpoint object namespace.
2010-07-05checkpointing: fix minor bugSteve Reinhardt
Somehow we now need to explicitly specialize on 'signed char' and not just 'char' to catch cases like int8_t
2010-07-05process: get rid of some unused code & varsSteve Reinhardt
2010-07-05process: minor format/style cleanupSteve Reinhardt
2010-06-14stats: get rid of the never-really-used event stuffNathan Binkert
2010-06-09flags: add comment to avoid future deletions since code appears redundant.Lisa Hsu
2010-06-08flags: Unserializing old checkpoints before the introductionLisa Hsu
of the Initialized flag would break, set Initialized for events upon unserialization.
2010-06-03More minor gdb-related cleanup.Steve Reinhardt
Found several more stale includes and forward decls.
2010-06-03Minor remote GDB cleanup.Steve Reinhardt
Expand the help text on the --remote-gdb-port option so people know you can use it to disable remote gdb without reading the source code, and thus don't waste any time trying to add a separate option to do that. Clean up some gdb-related cruft I found while looking for where one would add a gdb disable option, before I found the comment that told me that I didn't need to do that.
2010-06-02ARM: Allow ARM processes to start in Thumb mode.Gabe Black
2010-06-02ARM: Detect thumb mode elf images.Gabe Black
2010-05-06compile: don't #include unnecessary stuffNathan Binkert
Time from base/time.hh has a name clash with Time from Ruby's TypeDefines.hh. Eventually Ruby's Time should go away, so instead of fixing this properly just try to avoid the clash.
2010-04-18stats: make simTicks and simFreq accessible from stats.hhNathan Binkert
2010-04-18event: Allow EventWrapper to take an object referenceNathan Binkert
2010-04-15tick: rename Clock namespace to SimClockNathan Binkert
2010-04-15eventq: move EventQueue constructor to cc fileNathan Binkert
Also make copy constructor and assignment operator private.
2010-04-02eventq: allow an implicit cast from an EventManager to an EventQueue *Nathan Binkert
2010-04-02eventq: Clean up some flagsNathan Binkert
- Make the initialized flag always available, not just in debug mode. - Make the Initialized flag actually use several bits so it is very unlikely that something that's uninitialized accidentally looks initialized. - Add an initialized() function that tells you if the current event is indeed initialized. - Clear the flags on delete so it can't be accidentally thought of as initialized. - Fix getFlags assert statement. "How did this ever work?"