Age | Commit message (Collapse) | Author |
|
This patch adds the ability to load in config.ini files generated from
gem5 into another instance of gem5 built without Python configuration
support. The intended use case is for configuring gem5 when it is a
library embedded in another simulation system.
A parallel config file reader is also provided purely in Python to
demonstrate the approach taken and to provided similar functionality
for as-yet-unknown use models. The Python configuration file reader
can read both .ini and .json files.
C++ configuration file reading:
A command line option has been added for scons to enable C++ configuration
file reading: --with-cxx-config
There is an example in util/cxx_config that shows C++ configuration in action.
util/cxx_config/README explains how to build the example.
Configuration is achieved by the object CxxConfigManager. It handles
reading object descriptions from a CxxConfigFileBase object which
wraps a config file reader. The wrapper class CxxIniFile is provided
which wraps an IniFile for reading .ini files. Reading .json files
from C++ would be possible with a similar wrapper and a JSON parser.
After reading object descriptions, CxxConfigManager creates
SimObjectParam-derived objects from the classes in the (generated with this
patch) directory build/ARCH/cxx_config
CxxConfigManager can then build SimObjects from those SimObjectParams (in an
order dictated by the SimObject-value parameters on other objects) and bind
ports of the produced SimObjects.
A minimal set of instantiate-replacing member functions are provided by
CxxConfigManager and few of the member functions of SimObject (such as drain)
are extended onto CxxConfigManager.
Python configuration file reading (configs/example/read_config.py):
A Python version of the reader is also supplied with a similar interface to
CxxConfigFileBase (In Python: ConfigFile) to config file readers.
The Python config file reading will handle both .ini and .json files.
The object construction strategy is slightly different in Python from the C++
reader as you need to avoid objects prematurely becoming the children of other
objects when setting parameters.
Port binding also needs to be strictly in the same port-index order as the
original instantiation.
|
|
Add the ability to build libgem5 without embedded Python or the
ability to configure with Python.
This is a prelude to a patch to allow config.ini files to be loaded
into libgem5 using only C++ which would make embedding gem5 within
other simulation systems easier.
This adds a few registration interfaces to things which cross
between Python and C++. Namely: stats dumping and SimObject resolving
|
|
Another bunch of issues addressed.
|
|
This patch optimises the passing of StaticInstPtr by avoiding copying
the reference-counting pointer. This avoids first incrementing and
then decrementing the reference-counting pointer.
|
|
Add some missing initialisation, and fix a handful benign resource
leaks (including some false positives).
|
|
activate(), suspend(), and halt() used on thread contexts had an optional
delay parameter. However this parameter was often ignored. Also, when used,
the delay was seemily arbitrarily set to 0 or 1 cycle (no other delays were
ever specified). This patch removes the delay parameter and 'Events'
associated with them across all ISAs and cores. Unused activate logic
is also removed.
|
|
There are cases where users might by accident / intention specify less voltage
operating points thatn frequency points. We consider one of these cases
special: giving only a single voltage to a voltage domain effectively renders
it as a static domain. This patch adds additional logic in the auxiliary parts
of the functionality to handle these cases properly (simple driver asking for
N>1 operating levels, we should return the same voltage for all of them) and
adds error checking code in the voltage domain.
|
|
These additions allow easier interoperability with and querying from an
additional controller which will be in a separate patch. Also adding warnings
for changing the enabled state of the handler across checkpoint / resume and
deviating from the state in the configuration.
Contributed-by: Akash Bagdia <akash.bagdia@arm.com>
|
|
This patch does a bit of housekeeping on the string helper functions
and relies on the C++11 standard library where possible. It also does
away with our custom string hash as an implementation is already part
of the standard library.
|
|
This patch changes how faults are passed between methods in an attempt
to copy as few reference-counting pointer instances as possible. This
should avoid unecessary copies being created, contributing to the
increment/decrement of the reference counters.
|
|
This patch ensures we adhere to the normal ostream usage rules, and
restore the flags after modifying them.
|
|
This patch closes a number of space gaps in debug messages caused by
the incorrect use of line continuation within strings. (There's also
one consistency change to a similar, but correct, use of line
continuation)
|
|
The ProbeListener base class automatically registers itself with a
probe manager. Currently, the class does not unregister a itself when
it is destroyed, which makes removing probes listeners somewhat
cumbersome. This patch adds an automatic call to
manager->removeListener in the ProbeListener destructor, which solves
the problem.
|
|
Static analysis revealed that BaseGlobalEvent::barrier was never
deallocated. This changeset solves this leak by making the barrier
allocation a part of the BaseGlobalEvent instead of storing a pointer
to a separate heap-allocated barrier.
|
|
Static analysis unearther a bunch of uninitialised variables and
members, and this patch addresses the problem. In all cases these
omissions seem benign in the end, but at least fixing them means less
false positives next time round.
|
|
Analogous to ee049bf (for x86). Requires a bump of the checkpoint version
and corresponding upgrader code to move the condition code register values
to the new register file.
|
|
This patch makes restoring the 'lastStopped' value for Ticked-containing
objects (including MinorCPU) optional so that Ticked-containing objects
can be restored from non-Ticked-containing objects (such as AtomicSimpleCPU).
|
|
This patch prunes unused values, and also unifies how the values are
defined (not using an enum for ALPHA), aligning the use of int vs Addr
etc.
The patch also removes the duplication of PageBytes/PageShift and
VMPageSize/LogVMPageSize. For all ISAs the two pairs had identical
values and the latter has been removed.
|
|
This patch enables the use of page tables that are stored in system memory
and respect x86 specification, in SE mode. It defines an architectural
page table for x86 as a MultiLevelPageTable class and puts a placeholder
class for other ISAs page tables, giving the possibility for future
implementation.
|
|
This patch defines a multi-level page table class that stores the page table in
system memory, consistent with ISA specifications. In this way, cpu models that
use the actual hardware to execute (e.g. KvmCPU), are able to traverse the page
table.
|
|
This patch adds a fix for older checkpoints before support for
multiple event queues were added in changeset 2cce74fe359e. The change
in checkpoint version should really hav ebeen part of the
aforementioned changeset.
|
|
Baremetal workloads are specified using the "kernel" parameter, but
don't always have the correct address mappings. This patch adds a
boolean flag to the system and bypasses the kernel addr mapping checks
when running in baremetal mode.
|
|
RefCountingPtr is sometimes forward declared to avoid having to
include refcnt.hh. This does not work since we typically return
instances of RefCountingPtr rather than references to instances. The
only reason this currently works is that we include refcnt.hh in
cprintf.hh, which "leaks" the header to most other source files. This
changeset replaces such forward declarations with an include of
refcnt.hh.
|
|
This patch adds the SubSystem container for grouping
simobjects together in logical subsystems to facilitate
building a larger system from constituent parts. The container
is simply a non-abstract empty simobject to hold the components
that will be connected as its children. In simulation the
object does not participate, its only use is during configuration
of the system.
|
|
This patch contains a new CPU model named `Minor'. Minor models a four
stage in-order execution pipeline (fetch lines, decompose into
macroops, decompose macroops into microops, execute).
The model was developed to support the ARM ISA but should be fixable
to support all the remaining gem5 ISAs. It currently also works for
Alpha, and regressions are included for ARM and Alpha (including Linux
boot).
Documentation for the model can be found in src/doc/inside-minor.doxygen and
its internal operations can be visualised using the Minorview tool
utils/minorview.py.
Minor was designed to be fairly simple and not to engage in a lot of
instruction annotation. As such, it currently has very few gathered
stats and may lack other gem5 features.
Minor is faster than the o3 model. Sample results:
Benchmark | Stat host_seconds (s)
---------------+--------v--------v--------
(on ARM, opt) | simple | o3 | minor
| timing | timing | timing
---------------+--------+--------+--------
10.linux-boot | 169 | 1883 | 1075
10.mcf | 117 | 967 | 491
20.parser | 668 | 6315 | 3146
30.eon | 542 | 3413 | 2414
40.perlbmk | 2339 | 20905 | 11532
50.vortex | 122 | 1094 | 588
60.bzip2 | 2045 | 18061 | 9662
70.twolf | 207 | 2736 | 1036
|
|
Surprisingly gcc will complain about unused variables even
inside an 'if (false)' block.
I thought I had tested this previously, but apparently not.
|
|
The System object has a static MemoryModeStrings array
that's (1) unused and (2) redundant, since there's an
auto-generated version in the Enums namespace. No
point in leaving it in.
|
|
When we switched getSyscallArg() from explicit arg indices to
the implicit method, some DPRINTF arguments were left as calls
to getSyscallArg(), even though C/C++ doesn't guarantee
anything about the order of invocation of these calls. As a
result, the args could be printed out in arbitrary orders.
Interestingly, this bug has been around since 2009:
http://repo.gem5.org/gem5/rev/4842482e1bd1
|
|
This patch updates the checkpoint upgrader script. It adds the _perfLevel
variable in the clock domain and voltage domain simObjects used for DVFS.
|
|
Adds DVFS capabilities to gem5, by allowing users to specify lists for
frequencies and voltages in SrcClockDomains and VoltageDomains respectively.
A separate component, DVFSHandler, provides a small interface to change
operating points of the associated domains.
Clock domains will be linked to voltage domains and thus allow separate clock,
but shared voltage lines.
Currently all the valid performance-level updates are performed with a fixed
transition latency as specified for the domain.
Config file example:
...
vd = VoltageDomain(voltage = ['1V','0.95V','0.90V','0.85V'])
tsys.cluster1.clk_domain.clock = ['1GHz','700MHz','400MHz','230MHz']
tsys.cluster2.clk_domain.clock = ['1GHz','700MHz','400MHz','230MHz']
tsys.cluster1.clk_domain.domain_id = 0
tsys.cluster2.clk_domain.domain_id = 1
tsys.cluster1.clk_domain.voltage_domain = vd
tsys.cluster2.clk_domain.voltage_domain = vd
tsys.dvfs_handler.domains = [tsys.cluster1.clk_domain,
tsys.cluster2.clk_domain]
tsys.dvfs_handler.enable = True
|
|
The language describing the clockEdge and nextCycle functions were ambiguous,
and so were prone to misinterpretation/misuse. Clear up the comments to more
rigorously describe their functionality.
|
|
|
|
Needed for new AArch64 binaries
|
|
Allow setting of 'when' in trace records. This allows later times
than the arbitrary record creation point to be used as inst. times
|
|
The ARM TLBs have a bootUncacheability flag used to make some loads
and stores become uncacheable when booting in FS mode. Later the
flag is cleared to let those loads and stores operate as normal. When
doing a takeOverFrom(), this flag's state is not preserved and is
momentarily reset until the CPSR is touched. On single core runs this
is a non-issue. On multi-core runs this can lead to crashes on the O3
CPU model from the following series of events:
1) takeOverFrom executed to switch from Atomic -> O3
2) All bootUncacheability flags are reset to true
3) Core2 tries to execute a load covered by bootUncacheability, it
is flagged as uncacheable
4) Core2's load needs to replay due to a pipeline flush
3) Core1 core does an action on CPSR
4) The handling code for CPSR then checks all other cores
to determine if bootUncacheability can be set to false
5) Asynchronously set bootUncacheability on all cores to false
6) Core2 replays load previously set as uncacheable and notices
it is now flagged as cacheable, leads to a panic.
This patch implements takeOverFrom() functionality for the ARM TLBs
to preserve flag values when switching from atomic -> detailed.
|
|
This patch fixes the unit in the abort printout.
|
|
Upon aggregating records, serialize system's cache-block size, as the
cache-block size can be different when restoring from a checkpoint. This way,
we can correctly read all records when restoring from a checkpoints, even if
the cache-block size is different.
Note, that it is only possible to restore from a checkpoint if the
desired cache-block size is smaller or equal to the cache-block size
when the checkpoint was taken; we can split one larger request into
multiple small ones, but it is not reliable to do the opposite.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
We need the ability to lock event queues to enable device accesses
across threads. The serviceOne() method now takes a service lock prior
to handling a new event. By locking an event queue, a different
thread/eq can effectively execute in the context of the locked event
queue. To simplify temporary event queue migrations, this changeset
introduces the EventQueue::ScopedMigration class that unlocks the
current event queue, locks a new event queue, and updates the current
event queue variable.
In order to prevent deadlocks, event queues need to be released when
waiting on barriers. This is implemented using the
EventQueue::ScopedRelease class. An instance of this class is, for
example, used in the BaseGlobalEvent class to release the event queue
when waiting on the synchronization barrier.
The intended use for this functionality is when devices need to be
accessed across thread boundaries. For example, when fast-forwarding,
it might be useful to run devices and CPUs in separate threads. In
such a case, the CPU locks the device queue whenever it needs to
perform IO. This functionality is primarily intended for KVM.
Note: Migrating between event queues can lead to non-deterministic
timing. Use with extreme care!
--HG--
extra : rebase_source : 23e3a741a1fd73861d1339782dbbe1bc76285315
|
|
Small fixes to appease recent clang versions.
|
|
The global synchronization event used to be scheduled at
simQuantum. This prevented repeated entries into gem5 from Python as
it can be scheduled in the past. This changeset ensures that the first
global synchronization happens at curTick() + simQuantum instead.
|
|
Note: AArch64 and AArch32 interworking is not supported. If you use an AArch64
kernel you are restricted to AArch64 user-mode binaries. This will be addressed
in a later patch.
Note: Virtualization is only supported in AArch32 mode. This will also be fixed
in a later patch.
Contributors:
Giacomo Gabrielli (TrustZone, LPAE, system-level AArch64, AArch64 NEON, validation)
Thomas Grocutt (AArch32 Virtualization, AArch64 FP, validation)
Mbou Eyole (AArch64 NEON, validation)
Ali Saidi (AArch64 Linux support, code integration, validation)
Edmund Grimley-Evans (AArch64 FP)
William Wang (AArch64 Linux support)
Rene De Jong (AArch64 Linux support, performance opt.)
Matt Horsnell (AArch64 MP, validation)
Matt Evans (device models, code integration, validation)
Chris Adeniyi-Jones (AArch64 syscall-emulation)
Prakash Ramrakhyani (validation)
Dam Sunwoo (validation)
Chander Sudanthi (validation)
Stephan Diestelhorst (validation)
Andreas Hansson (code integration, performance opt.)
Eric Van Hensbergen (performance opt.)
Gabe Black
|
|
This patch adds support for the openat and fstatat syscalls and
broadens the support for mremap to make it work on OS X.
|
|
The probe patch is motivated by the desire to move analytical and trace code
away from functional code. This is achieved by the probe interface which is
essentially a glorified observer model.
What this means to users:
* add a probe point and a "notify" call at the source of an "event"
* add an isolated module, that is being used to carry out *your* analysis (e.g. generate a trace)
* register that module as a probe listener
Note: an example is given for reference in src/cpu/o3/simple_trace.[hh|cc] and src/cpu/SimpleTrace.py
What is happening under the hood:
* every SimObject maintains has a ProbeManager.
* during initialization (src/python/m5/simulate.py) first regProbePoints and
the regProbeListeners is called on each SimObject. this hooks up the probe
point notify calls with the listeners.
FAQs:
Why did you develop probe points:
* to remove trace, stats gathering, analytical code out of the functional code.
* the belief that probes could be generically useful.
What is a probe point:
* a probe point is used to notify upon a given event (e.g. cpu commits an instruction)
What is a probe listener:
* a class that handles whatever the user wishes to do when they are notified
about an event.
What can be passed on notify:
* probe points are templates, and so the user can generate probes that pass any
type of argument (by const reference) to a listener.
What relationships can be generated (1:1, 1:N, N:M etc):
* there isn't a restriction. You can hook probe points and listeners up in a
1:1, 1:N, N:M relationship. They become useful when a number of modules
listen to the same probe points. The idea being that you can add a small
number of probes into the source code and develop a larger number of useful
analysis modules that use information passed by the probes.
Can you give examples:
* adding a probe point to the cpu's commit method allows you to build a trace
module (outputting assembler), you could re-use this to gather instruction
distribution (arithmetic, load/store, conditional, control flow) stats.
Why is the probe interface currently restricted to passing a const reference:
* the desire, initially at least, is to allow an interface to observe
functionality, but not to change functionality.
* of course this can be subverted by const-casting.
What is the performance impact of adding probes:
* when nothing is actively listening to the probes they should have a
relatively minor impact. Profiling has suggested even with a large number of
probes (60) the impact of them (when not active) is very minimal (<1%).
|
|
|
|
This patch adds observability to the clock period of the clock domains
by including it as a stat.
As a result of adding this, the regressions will be updated in a
separate patch.
|
|
This patch provides support for DFS by having ClockedObjects register
themselves with their clock domain at construction time in a member list.
Using this list, a clock domain can update each member's tick to the
curTick() before modifying the clock period.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
There is a race between enabling asynchronous IO for a file descriptor
and IO events happening on that descriptor. A SIGIO won't normally be
delivered if an event is pending when asynchronous IO is
enabled. Instead, the signal will be raised the next time there is an
event on the FD. This changeset simulates a SIGIO by setting the
async_io flag when setting up asynchronous IO for an FD. This causes
the main event loop to poll all file descriptors to check for pending
IO. As a consequence of this, the old SIGALRM hack should no longer be
needed and is therefore removed.
|
|
The PollEvent class dynamically installs a SIGIO and SIGALRM handler
when a file handler is registered. Most signal handlers currently get
registered in the initSignals() function. This changeset moves the
SIGIO/SIGALRM handlers to initSignals() to live with the other signal
handlers. The original code installs SIGIO and SIGALRM with the
SA_RESTART option to prevent syscalls from returning EINTR. This
changeset consistently uses this flag for all signal handlers to
ensure that other signals that trigger asynchronous behavior (e.g.,
statistics dumping) do not cause undesirable EINTR returns.
|
|
|
|
This patch adds support for simulating with multiple threads, each of
which operates on an event queue. Each sim object specifies which eventq
is would like to be on. A custom barrier implementation is being added
using which eventqs synchronize.
The patch was tested in two different configurations:
1. ruby_network_test.py: in this simulation L1 cache controllers receive
requests from the cpu. The requests are replied to immediately without
any communication taking place with any other level.
2. twosys-tsunami-simple-atomic: this configuration simulates a client-server
system which are connected by an ethernet link.
We still lack the ability to communicate using message buffers or ports. But
other things like simulation start and end, synchronizing after every quantum
are working.
Committed by: Nilay Vaish
|