Age | Commit message (Collapse) | Author |
|
Add schedRelBreak() function, executable within a debugger, that sets a
breakpoint by relative rather than absolute tick.
|
|
Adds a GDB callable function that sets a breakpoint at
the beginning of a kernel function.
|
|
Trying to run an SE system with varying threads per core (SMT cores + Non-SMT
cores) caused failures due to the CPU id assignment logic. The comment
about thread assignment (worrying about core 0 not having tid 0) seems
not to be valid given that our configuration scripts initialize them in
order.
This removes that constraint so a heterogenously threaded sytem can work.
|
|
The recent changeset to readlink() to handle reading the /proc/self/exe link
introduces a number of problems. This patch fixes two:
1) Because readlink() called on /proc/self/exe now uses LiveProcess::progName()
to find the binary path, it will only get the zeroth parameter of the simulated
system command line. However, if a config script also specifies the process'
executable, the executable parameter is used to create the LiveProcess rather
than the zeroth command line parameter. Thus, the zeroth command line parameter
is not necessarily the correct path to the binary executing in the simulated
system. To fix this, add a LiveProcess data member, 'executable', which is
correctly set during instantiation and returned from progName().
2) If a config script allows a user to pass a relative path as the zeroth
simulated system command line parameter or process executable, readlink() will
incorrecly return a relative path when called on '/proc/self/exe'.
/proc/self/exe is always set to a full path, so running benchmarks can fail if
a relative path is returned. To fix this, clean up the handling of
LiveProcess::progName() within readlink() to get the full binary path.
NOTE: This patch still leaves the potential problem that host full path to the
binary bleeds into the simulated system, potentially causing the appearance of
non-deterministic simulated system execution.
|
|
This patch fixes a use-after-delete issue in the packet probe points
by adding a PacketInfo struct to retain the key fields before passing
the packet onwards. We want to probe the packet after it is
successfully sent, but by that time the fields may be modified, and
the packet may even be deleted.
Amazingly enough the issue has gone undetected for months, and only
recently popped up in our regressions.
|
|
|
|
This commit addresses gem5 checkpoints' linear versioning bottleneck.
Since development is distributed across many private trees, there exists
a sort of 'race' for checkpoint version numbers: internally a checkpoint
version may be used but then resynchronizing with the external tree causes
a conflict on that version. This change replaces the linear version number
with a set of unique strings called tags. Now the only conflicts that can
arise are of tag names, where collisions are much easier to avoid.
The checkpoint upgrader (util/cpt_upgrader.py) upgrades the version
representation, as one would expect. Each tag version implements its
upgrader code in a python file in the util/cpt_upgraders directory
rather than adding a function to the upgrader script itself.
The version tags are stored in the 'Globals' section rather than 'root'
(as the version was previously) because 'Globals' gets unserialized
first and can provide a warning before any other unserialization errors
can occur.
|
|
This is in support of tag-based checkpoint versioning; the version tags
are stored in string sets. This commit adds such support.
|
|
This is in support of tag-based checkpoint versioning. It should be
possible to examine an optional parameter in a checkpoint during
unserialization and not have it throw a warning.
|
|
Event auto-serialization no longer in use and has been broken ever
since the introduction of PDES support almost two years
ago. Additionally, serializing the individual event queues is
undesirable since it exposes the thread structure of the
simulator. What this means in practice is that the number of threads
in the simulator must be the same when taking a checkpoint and when
loading the checkpoint.
This changeset removes support for the AutoSerialize event flag and
the associated serialization code.
|
|
This changeset removes the support for the autoserialize parameter in
GlobalSimLoopExitEvent (including exitSimLoop()) and
LocalSimLoopExitEvent.
Auto-serialization of the LocalSimLoopExitEvent was never used, so
this is not expected to affect anything. However, it was sometimes
used for GlobalSimLoopExitEvent. Unfortunately, serialization of
global events has never been supported, so checkpoints with such
events will currently cause simulation panics.
The serialize parameter to exitSimLoop() has been left in-place to
maintain API compatibility (removing it would affect m5ops). Instead
of just dropping it, we now print a warning if the parameter is set
and the exit event is scheduled in the future (i.e., not at the
current tick).
|
|
|
|
|
|
The object resolver isn't serialization specific and shouldn't live in
serialize.hh. Move it to sim_object.hh since it queries to the
SimObject hierarchy.
|
|
The O3CPU blocks the Fetch when it sees a quiesce instruction (IsQuiesce flag).
When the inst. is executed, a quiesce event is created to reactivate the
context and unblock the Fetch.
If the quiesceNs or quiesceCycles are called with a value of 0, the
QuiesceEvent will not be created and the Fetch stage will remain blocked.
Committed by Joel Hestness <jthestness@gmail.com>
|
|
|
|
|
|
Split ClockedObject into two classes: Clocked that provides the basic
clock functionality, and ClockedObject that inherits from Clocked and
SimObject to provide the functionality of the old ClockedObject.
|
|
Context IDs used to be declared as ad hoc (usually as int). This
changeset introduces a typedef for ContextIDs and a constant for
invalid context IDs.
|
|
Fix comments that got outdated by the draining rewrite. Also fixup
constness for methods in the querying drain state in the DrainManager.
|
|
It is sometimes desirable to be able to instantiate Drainable objects
when the simulator isn't in the Running state. Currently, we always
initialize Drainable objects to the Running state. However, this
confuses many of the sanity checks in the base class since objects
aren't expected to be in the Running state if the system is in the
Draining or Drained state.
Instead of always initializing the state variable in Drainable to
DrainState::Running, initialize it to the state the DrainManager is
in.
Note: This means an object can be created in the Draining/Drained
state without first calling drain().
|
|
This changeset adds a standardized probe point type to monitor packets
in the memory system and adds two probe points to the CommMonitor
class. These probe points enable monitoring of successfully delivered
requests and successfully delivered responses.
Memory system probe listeners should use the BaseMemProbe base class
to provide a unified configuration interface and reuse listener
registration code. Unlike the ProbeListenerObject class, the
BaseMemProbe allows objects to be wired to multiple ProbeManager
instances as long as they use the same probe point name.
|
|
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
There are 2 problems with the existing checkpoint and restore code in ruby.
The first is that when the event queue is altered by ruby during serialization,
some events that are currently scheduled cannot be found (e.g. the event to
stop simulation that always lives on the queue), causing a panic.
The second is that ruby is sometimes serialized after the memory system,
meaning that the dirty data in its cache is flushed back to memory too late
and so isn't included in the checkpoint.
These are fixed by implementing memory writeback in ruby, using the same
technique of hijacking the event queue, but first descheduling all events that
are currently on it. They are saved, along with their scheduled time, so that
the event queue can be faithfully reconstructed after writeback has finished.
Events with the AutoDelete flag set will delete themselves when they
are descheduled, causing an error when attempting to schedule them again.
This is fixed by simply not recording them when taking them off the queue.
Writeback is still implemented using flushing, so the cache recorder object,
that is created to generate the trace and manage flushing, is kept
around and used during serialization to write the trace to disk.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
This patch implements the correct behavior.
|
|
|
|
This adds a vector register type. The type is defined as a std::array of a
fixed number of uint64_ts. The isa_parser.py has been modified to parse vector
register operands and generate the required code. Different cpus have vector
register files now.
|
|
The Process class methods were using an improper style and this subsequently
bled into the system call code. The following regular expressions should be
helpful if someone transitions private system call patches on top of these
changesets:
s/alloc_fd/allocFD/
s/sim_fd(/simFD(/
s/sim_fd_obj/getFDEntry/
s/fix_file_offsets/fixFileOffsets/
s/find_file_offsets/findFileOffsets/
|
|
The patch clarifies whether file descriptors are host file descriptors or
target file descriptors in the system call code. (Host file descriptors
are file descriptors which have been allocated through real system calls
where target file descriptors are allocated from an array in the Process
class.)
|
|
This patch extends the previous patch's alterations around fd_map. It cleans
up some of the uglier code in the process file and replaces it with a more
concise C++11 version. As part of the changes, the FdMap class is pulled out
of the Process class and receives its own file.
|
|
This patch gets rid of unused Process::dup_fd method and does minor
refactoring in the process class files. The file descriptor max has been
changed to be the number of file descriptors since this clarifies the loop
boundary condition and cleans up the code a bit. The fd_map field has been
altered to be dynamically allocated as opposed to being an array; the
intention here is to build on this is subsequent patches to allow processes
to share their file descriptors with the clone system call.
|
|
The drain() call currently passes around a DrainManager pointer, which
is now completely pointless since there is only ever one global
DrainManager in the system. It also contains vestiges from the time
when SimObjects had to keep track of their child objects that needed
draining.
This changeset moves all of the DrainState handling to the Drainable
base class and changes the drain() and drainResume() calls to reflect
this. Particularly, the drain() call has been updated to take no
parameters (the DrainManager argument isn't needed) and return a
DrainState instead of an unsigned integer (there is no point returning
anything other than 0 or 1 any more). Drainable objects should return
either DrainState::Draining (equivalent to returning 1 in the old
system) if they need more time to drain or DrainState::Drained
(equivalent to returning 0 in the old system) if they are already in a
consistent state. Returning DrainState::Running is considered an
error.
Drain done signalling is now done through the signalDrainDone() method
in the Drainable class instead of using the DrainManager directly. The
new call checks if the state of the object is DrainState::Draining
before notifying the drain manager. This means that it is safe to call
signalDrainDone() without first checking if the simulator has
requested draining. The intention here is to reduce the code needed to
implement draining in simple objects.
|
|
Draining is currently done by traversing the SimObject graph and
calling drain()/drainResume() on the SimObjects. This is not ideal
when non-SimObjects (e.g., ports) need draining since this means that
SimObjects owning those objects need to be aware of this.
This changeset moves the responsibility for finding objects that need
draining from SimObjects and the Python-side of the simulator to the
DrainManager. The DrainManager now maintains a set of all objects that
need draining. To reduce the overhead in classes owning non-SimObjects
that need draining, objects inheriting from Drainable now
automatically register with the DrainManager. If such an object is
destroyed, it is automatically unregistered. This means that drain()
and drainResume() should never be called directly on a Drainable
object.
While implementing the new functionality, the DrainManager has now
been made thread safe. In practice, this means that it takes a lock
whenever it manipulates the set of Drainable objects since SimObjects
in different threads may create Drainable objects
dynamically. Similarly, the drain counter is now an atomic_uint, which
ensures that it is manipulated correctly when objects signal that they
are done draining.
A nice side effect of these changes is that it makes the drain state
changes stricter, which the simulation scripts can exploit to avoid
redundant drains.
|
|
The memWriteback() and memInvalidate() calls used to live in the
Serializable interface. In this series of patches, the Serializable
interface will be redesigned to make serialization independent of the
object graph and always work on the entire simulator. This means that
the Serialization interface won't be useful to perform maintenance of
the caches in a sub-graph of the entire SimObject graph. This
changeset moves these memory maintenance methods to the SimObject
interface instead.
|
|
The drain state enum is currently a part of the Drainable
interface. The same state machine will be used by the DrainManager to
identify the global state of the simulator. Make the drain state a
global typed enum to better cater for this usage scenario.
|
|
Add the SERIALIZE_OBJ / UNSERIALIZE_OBJ macros that serialize an
object into a subsection of the current checkpoint section.
|
|
Serialize pixels as unsigned 32 bit integers by adding the required
to_number() and stream operators. This is used by the FrameBuffer,
which now implements the Serializable interface. Users of frame
buffers are expected to serialize it into its own section by calling
serializeSection().
|
|
Events expected to be unserialized using an event-specific
unserializeEvent call. This call was never actually used, which meant
the events relying on it never got unserialized (or scheduled after
unserialization).
Instead of relying on a custom call, we now use the normal
serialization code again. In order to schedule the event correctly,
the parrent object is expected to use the
EventQueue::checkpointReschedule() call. This happens automatically
for events that are serialized using the AutoSerialize mechanism.
|
|
Objects that are can be serialized are supposed to inherit from the
Serializable class. This class is meant to provide a unified API for
such objects. However, so far it has mainly been used by SimObjects
due to some fundamental design limitations. This changeset redesigns
to the serialization interface to make it more generic and hide the
underlying checkpoint storage. Specifically:
* Add a set of APIs to serialize into a subsection of the current
object. Previously, objects that needed this functionality would
use ad-hoc solutions using nameOut() and section name
generation. In the new world, an object that implements the
interface has the methods serializeSection() and
unserializeSection() that serialize into a named /subsection/ of
the current object. Calling serialize() serializes an object into
the current section.
* Move the name() method from Serializable to SimObject as it is no
longer needed for serialization. The fully qualified section name
is generated by the main serialization code on the fly as objects
serialize sub-objects.
* Add a scoped ScopedCheckpointSection helper class. Some objects
need to serialize data structures, that are not deriving from
Serializable, into subsections. Previously, this was done using
nameOut() and manual section name generation. To simplify this,
this changeset introduces a ScopedCheckpointSection() helper
class. When this class is instantiated, it adds a new /subsection/
and subsequent serialization calls during the lifetime of this
helper class happen inside this section (or a subsection in case
of nested sections).
* The serialize() call is now const which prevents accidental state
manipulation during serialization. Objects that rely on modifying
state can use the serializeOld() call instead. The default
implementation simply calls serialize(). Note: The old-style calls
need to be explicitly called using the
serializeOld()/serializeSectionOld() style APIs. These are used by
default when serializing SimObjects.
* Both the input and output checkpoints now use their own named
types. This hides underlying checkpoint implementation from
objects that need checkpointing and makes it easier to change the
underlying checkpoint storage code.
|
|
|
|
The insertion of CONTEXTIDR_EL2 in the ARM miscellaneous registers
obsoletes old checkpoints.
|
|
Adding a few syscalls that were previously considered unimplemented.
|
|
Currently, frame buffer handling in gem5 is quite ad hoc. In practice,
we pass around naked pointers to raw pixel data and expect consumers
to convert frame buffers using the (broken) VideoConverter.
This changeset completely redesigns the way we handle frame buffers
internally. In summary, it fixes several color conversion bugs, adds
support for more color formats (e.g., big endian), and makes the code
base easier to follow.
In the new world, gem5 always represents pixel data using the Pixel
struct when pixels need to be passed between different classes (e.g.,
a display controller and the VNC server). Producers of entire frames
(e.g., display controllers) should use the FrameBuffer class to
represent a frame.
Frame producers are expected to create one instance of the FrameBuffer
class in their constructors and register it with its consumers
once. Consumers are expected to check the dimensions of the frame
buffer when they consume it.
Conversion between the external representation and the internal
representation is supported for all common "true color" RGB formats of
up to 32-bit color depth. The external pixel representation is
expected to be between 1 and 4 bytes in either big endian or little
endian. Color channels are assumed to be contiguous ranges of bits
within each pixel word. The external pixel value is scaled to an 8-bit
internal representation using a floating multiplication to map it to
the entire 8-bit range.
|
|
The system class currently clears the vector of active CPUs in
initState(). CPUs are added to the list by registerThreadContext()
which is called from BaseCPU::init(). This obviously breaks when the
System object is initialized after the CPUs. This changeset removes
the offending clear() call since the list will be empty after it has
been instantiated anyway.
|
|
The current ignoreWarnOnceFunc doesn't really work as expected,
since it will only generate one warning total, for whichever
"warn-once" syscall is invoked first. This patch fixes that
behavior by keeping a "warned" flag in the SyscallDesc object,
allowing suitably flagged syscalls to warn exactly once per
syscall.
|
|
This adds support for FreeBSD/aarch64 FS and SE mode (basic set of syscalls only)
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
|
|
Don't use std::cerr directly, and just return EINVAL instead of aborting.
|
|
Also nix extra whitespace.
|
|
The filenames are initialized with NULL. So the test should be
checking for them to be == NULL instead == None.
|