Age | Commit message (Collapse) | Author |
|
This patch ensures that the CPU progress Event is triggered for the new set of
switched_cpus that get scheduled (e.g. during fast-forwarding). it also avoids
printing the interval state if the cpu is currently switched out.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
|
|
Restoring from a checkpoint with ruby + the DRAMCtrl memory model was not
working, because ruby and DRAMCtrl disagreed on the current tick during warmup.
Since there is no reason to do timing requests during warmup, use functional
requests instead.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
The filenames are initialized with NULL. So the test should be
checking for them to be == NULL instead == None.
|
|
The function was using the host fd to obtain the fd object from the simulated
process.
|
|
This patch adds an example configuration in ext/sst/tests/ that allows
an SST/gem5 instance to simulate a 4-core AArch64 system with SST's
memHierarchy components providing all the caches and memories.
|
|
Restoring from a checkpoint fails if either the RTC or the RTC Timer
Interrrupt event is disabled. The restored machine tried incorrectly
to schedule the next event with negative offset.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
Add 32-bit access width for PrimaryTiming register and 16bit for UDMAControl
register as FreeBSD required.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
The totalInstructions counter is only incremented when the whole instruction is
commited and not on every microop. It was incorrectly reset in atomic and
timing cpus.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>"
|
|
When running with the Exec flag, the mwait instruction attempted
to print out its source registers, which were never actually
initialized. This led to sporadic assertion failures when the
value stored there was invalid.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
The stride prefetcher had a hardcoded number of contexts (i.e. master-IDs)
that it could handle. Since master IDs need to be unique per system, and
every core, cache etc. requires a separate master port, a static limit on
these does not make much sense.
Instead, this patch adds a small hash map that will map all master IDs to
the right prefetch state and dynamically allocates new state for new master
IDs.
|
|
This patch changes the order of writeback allocation such that any
writebacks resulting from a tag lookup (e.g. for an uncacheable
access), are added to the writebuffer before any new MSHR entries are
allocated. This ensures that the writebacks logically precedes the new
allocations.
The patch also changes the uncacheable flush to use proper timed (or
atomic) writebacks, as opposed to functional writes.
|
|
This patch simplifies the code dealing with uncacheable timing
accesses, aiming to align it with the existing miss handling. Similar
to what we do in atomic, a timing request now goes through
Cache::access (where the block is also flushed), and then proceeds to
ignore any existing MSHR for the block in question. This unifies the
flow for cacheable and uncacheable accesses, and for atomic and timing.
|
|
This patch changes how we search for matching MSHRs, ignoring any MSHR
that is allocated for an uncacheable access. By doing so, this patch
fixes a corner case in the MSHRs where incorrect data ended up being
copied into a (cacheable) read packet due to a first uncacheable MSHR
target of size 4, followed by a cacheable target to the same MSHR of
size 64. The latter target was filled with nonsense data.
|
|
This patch removes the no-longer-needed
allocateUncachedReadBuffer. Besides the checks it is exactly the same
as allocateMissBuffer and thus provides no value.
|
|
This patch updates the iterators in the MSHR and MSHR queues to use
C++11 range-based for loops. It also does a bit of additional house
keeping.
|
|
This patch aligns all MSHR queue entries to block boundaries to
simplify checks for matches. Previously there were corner cases that
could lead to existing entries not being identified as matches.
There are, rather alarmingly, a few regressions that change with this
patch.
|
|
This patch subsumes the PREFETCH_SNOOP_SQUASH flag with the more
generic BLOCK_CACHED flag. Future patches implementing cache eviction
messages can use the BLOCK_CACHED flag in almost the same manner as
hardware prefetches use the PREFETCH_SNOOP_SQUASH flag. The
PREFTECH_SNOOP_FLAG is set if the prefetch target is found in the tags
or the MSHRs in any state, so we are simply replacing calls to
setPrefetchSquashed() with setBlockCached(). The case of where the
prefetch target is found in the writeback MSHRs of upper level caches
continues to be covered by the MEM_INHIBIT flag.
|
|
Matching final version on reviewboard.
|
|
This patch fixes an issue that prevented gem5 to be built with C++
config and without Python.
|
|
Makes x86-style locked operations even more distinct from
LLSC operations. Using "locked" by itself should be
obviously ambiguous now.
|
|
Currently if there are shell special characters in a
command-line argument, you can't copy and paste the
echoed command line onto a shell prompt because the
characters aren't quoted properly. This patch fixes
that problem.
|
|
This patch accomplishes two things:
1. Makes simulate()'s GlobalSimLoopExitEvent a singleton reused
across calls. This is slightly more efficient than recreating
it every time.
2. Gives callers to simulate() (especially other simulators) a
foolproof way of knowing that the simulation period ended
successfully by hitting the limit event. They can call
getLimitEvent() and compare it to the return
value of simulate().
This change was motivated by an ongoing effort to integrate gem5
and SST, with SST as the master sim and gem5 as the slave sim.
|
|
This patch does a bit of house keeping, fixing up typos, removing dead
code etc.
|
|
This patch adds a new PIO-accessible GICv2m shim. This shim has a PIO
slave port on one side, and SPI 'wires' on the other. It accepts MSIs
from the system and triggers SPIs on the GIC. It is configurable with
a number of frames, each of which has a number of SPIs and a base SPI
offset.
A Linux driver for GICv2m is available upstream.
|
|
This patch removes the code that added this magic register. A
follow-up patch provides a GICv2m MSI shim that gives the same
functionality in a standard ARM system architecture way.
|
|
Fix erroneous message format for fatal error.
Previously, code did not have type indicator (% instead of %d).
Also removed redundant fatal check.
Ran modified sweep.py with in range and out of range values to test.
|
|
Embrace C++11 for the deferred packets as we actually store the
objects in the data structure, and not just pointers.
|
|
The CommMonitor by default only allows memory traces to be gathered in
timing mode. This patch allows memory traces to be gathered in atomic
mode if all one needs is a functional trace of memory addresses used
and timing information is of a secondary concern.
|
|
For some reason we were checking mshr->hasTargets() even though
we had already called mshr->getTarget() unconditionally earlier
in the same function (which asserts if there are no targets).
Get rid of this useless check, and while we're at it get rid
of the redundant call to mshr->getTarget(), since we still have
the value saved in a local var.
|
|
The main loop in recvTimingResp() uses target->pkt all over
the place. Create a local tgt_pkt to help keep lines
under the line length limit.
|
|
Refactor the way that specific MemCmd values are generated for packets.
The new approach is a little more elegant in that we assign the right
value up front, and it's also more amenable to non-heap-allocated
Packet objects.
Also replaced the code in the Minor model that was still doing it the
ad-hoc way.
This is basically a refinement of http://repo.gem5.org/gem5/rev/711eb0e64249.
|
|
The 'if (writebacks.size)' check was redundant, because
writeBuffer.findMatches() would return false if the
writebacks list was empty.
Also renamed 'mshr' to 'wb_entry' in this context since
we are pointing at a writebuffer entry and not an MSHR
(even though it's the same C++ class).
|
|
|
|
|
|
|
|
|
|
|
|
The variable is used in only one place and a whole new function setNextStatus()
has been defined just to compute the value of the variable. Instead of calling
the function, the value is now computed in the loop that preceded the function
call.
|
|
|
|
This patch changes all the DPRINTF messages in the cache to use
'%#llx' every time a packet address is printed. The inclusion of '#'
ensures '0x' is prepended, and since the address type is a uint64_t %x
really should be %llx.
|
|
This patch fixes a rather subtle issue in the sending of MSHR requests
in the cache, where the logic previously did not check for conflicts
between the MSRH queue and the write queue when requests were not
ready. The correct thing to do is to always check, since not having a
ready MSHR does not guarantee that there is no conflict.
The underlying problem seems to have slipped past due to the symmetric
timings used for the write queue and MSHR queue. However, with the
recent timing changes the bug caused regressions to fail.
|
|
This patch changes the valid-bytes start/end to a proper byte
mask. With the changes in timing introduced in previous patches there
are more packets waiting in queues, and there are regressions using
the checker CPU failing due to non-contigous read data being found in
the various cache queues.
This patch also adds some more comments explaining what is going on,
and adds the fourth and missing case to Packet::checkFunctional.
|
|
By default, the packet queue is ordered by the ticks of the to-be-sent
packages. With the recent modifications of packages sinking their header time
when their resposne leaves the caches, there could be cases of MSHR targets
being allocated and ordered A, B, but their responses being sent out in the
order B,A. This led to inconsistencies in bus traffic, in particular the snoop
filter observing first a ReadExResp and later a ReadRespWithInv. Logically,
these were ordered the other way around behind the MSHR, but due to the timing
adjustments when inserting into the PacketQueue, they were sent out in the
wrong order on the bus, confusing the snoop filter.
This patch adds a flag (off by default) such that these special cases can
request in-order insertion into the packet queue, which might offset timing
slighty. This is expected to occur rarely and not affect timing results.
|
|
This patch makes the caches and memory controllers consume the delay
that is annotated to a packet by the crossbar. Previously many
components simply threw these delays away. Note that the devices still
do not pay for these delays.
|
|
This patch introduces a few subclasses to the CoherentXBar and
NoncoherentXBar to distinguish the different uses in the system. We
use the crossbar in a wide range of places: interfacing cores to the
L2, as a system interconnect, connecting I/O and peripherals,
etc. Needless to say, these crossbars have very different performance,
and the clock frequency alone is not enough to distinguish these
scenarios.
Instead of trying to capture every possible case, this patch
introduces dedicated subclasses for the three primary use-cases:
L2XBar, SystemXBar and IOXbar. More can be added if needed, and the
defaults can be overridden.
|
|
This patch introduces latencies in crossbar that were neglected
before. In particular, it adds three parameters in crossbar model:
front_end_latency, forward_latency, and response_latency. Along with
these parameters, three corresponding members are added:
frontEndLatency, forwardLatency, and responseLatency. The coherent
crossbar has an additional snoop_response_latency.
The latency of the request path through the xbar is set as
--> frontEndLatency + forwardLatency
In case the snoop filter is enabled, the request path latency is charged
also by look-up latency of the snoop filter.
--> frontEndLatency + SF(lookupLatency) + forwardLatency.
The latency of the response path through the xbar is set instead as
--> responseLatency.
In case of snoop response, if the response is treated as a normal response
the latency associated is again
--> responseLatency;
If instead it is forwarded as snoop response we add an additional variable
+ snoopResponseLatency
and the latency associated is
--> snoopResponseLatency;
Furthermore, this patch lets the crossbar progress on the next clock
edge after an unused retry, changing the time the crossbar considers
itself busy after sending a retry that was not acted upon.
|
|
The ARM PL011 UART model didn't clear and raise interrupts
correctly. This changeset rewrites the whole interrupt handling and
makes it both simpler and fixes several cases where the correct
interrupts weren't raised or cleared. Additionally, it cleans up many
other aspects of the code.
|