summaryrefslogtreecommitdiff
path: root/src
AgeCommit message (Collapse)Author
2012-05-22Ruby Sequencer: Schedule deadlock check event at correct timeNilay Vaish
The scheduling of the deadlock check event was being done incorrectly as the clock was not being multiplied, so as to convert the time into ticks. This patch removes that bug.
2012-05-22X86: Split Condition Code registerNilay Vaish
This patch moves the ECF and EZF bits to individual registers (ecfBit and ezfBit) and the CF and OF bits to cfofFlag registers. This is being done so as to lower the read after write dependencies on the the condition code register. Ultimately we will have the following registers [ZAPS], [OF], [CF], [ECF], [EZF] and [DF]. Note that this is only one part of the solution for lowering the dependencies. The other part will check whether or not the condition code register needs to be actually read. This would be done through a separate patch.
2012-05-19x86 ISA: Implement the sse3 haddps instruction.Marc Orr
Shuffle the 32 bit values into position, and then add in parallel.
2012-05-19Syscalls: warn when the length argument to mmap is excessive.Gabe Black
If the length argument to mmap is larger than the arbitrary but reasonable limit of 4GB, there's a good chance that the value is nonsense and not intentional. Rather than attempting to satisfy the mmap anyway, this change makes gem5 warn to make it more apparent what's going wrong.
2012-05-14Mem: Fix size check when allocating physical memoryLena Olson
2012-05-10ARM: fix the calculation of the values in the RV clocksKoan-Sin Tan
This clock is used by the linux scheduler.
2012-05-10stats: fix compilation of unit test.Ali Saidi
2012-05-10stats: fix bug in assert for 2d vectorAli Saidi
2012-05-10ARM: pl011 raw interrupt fixChander Sudanthi
Raw interrupt was not being set when interrupt was disabled. This patch sets the raw interrupt regardless of the mask.
2012-05-10ARM: EMM board address range fixChander Sudanthi
0x40000000 is reservered for external AXI addresses. This address range is not used currently. Removed the range from the bridge.
2012-05-10DOT: improved dot-based system visualizationUri Wiener
Revised system visualization to reflect structure and memory hierarchy. Improved visualization: less congested and cluttered; more colorful. Nodes reflect components; directed edges reflect dirctional relation, from a master port to a slave port. Requires pydot.
2012-05-10DOT: fixed broken code for visualizing configuration using dotUri Wiener
Fixed broken code which visualizes the system configuration by generating a tree from each component's children, starting from root. Requires DOT (hence pydot).
2012-05-10ARM: guard masked symbol tables by defaultDam Sunwoo
Symbol tables masked with the loadAddrMask create redundant entries that could conflict with kernel function events that rely on the original addresses. This patch guards the creation of those masked symbol tables by default, with an option to enable them when needed (for early-stage kernel debugging, etc.)
2012-05-10mem: fix bug with CopyStringOut and null string termination.Ali Saidi
2012-05-10Cache: restructure code that actually isn't a loopAli Saidi
2012-05-10dev: use correct delete operation in SimpleDiskAli Saidi
2012-05-10ARM: Fix incorrect use of not operators in arm devicesAli Saidi
2012-05-10gem5: assert before indexing intro arrays to verify boundsAli Saidi
2012-05-10gem5: fix some iterator use and erase bugsAli Saidi
2012-05-10gem5: fix a number of use after free issuesAli Saidi
2012-05-10base: fix a invalid ?: operatorAli Saidi
2012-05-10gem5: Fix a number of incorrect case statementsAli Saidi
2012-05-10stats: track if the stats have been enabled and prevent requesting master idAli Saidi
Track the point in the initialization where statistics have been registered. After this point registering new masterIds can no longer work as some SimObjects may have sized stats vectors based on the previous value. If someone tries to register a masterId after this point the simulator executes fatal().
2012-05-10Cache: Panic if you attempt to create a checkpoint with a cache in the systemAli Saidi
2012-05-10IGbE: Fix writeback conditions for i8254x GbE in updated data sheet.Pritha Ghoshal
An older revision of the data sheet specified that txdctl.gran was 1 the granularity was based on cache block and gran being 0 is based on descriptor count. The newer version of the data sheet reverses this errata
2012-05-09stats: use nan instead of no_valueNathan Binkert
2012-05-09MEM: Add the communication monitorAndreas Hansson
This patch adds a communication monitor MemObject that can be inserted between a master and slave port to provide a range of statistics about the communication passing through it. The communication monitor is non-invasive and does not change any properties or timing of the packets, with the exception of adding a sender state to be able to track latency. The statistics are only collected in timing mode (not atomic) to avoid slowing down any fast forwarding. An example of the statistics captured by the monitor are: read/write burst lengths, bandwidth, request-response latency, outstanding transactions, inter transaction time, transaction count, and address distribution. The monitor can be used in combination with periodic resetting and dumping of stats (through schedStatEvent) to study the behaviour over time. In future patches, a selection of convenience scripts will be added to aid in visualising the statistics collected by the monitor.
2012-05-08MEM: Do not forward uncacheable to bus snoopersAndreas Hansson
This patch adds a guarding if-statement to avoid forwarding uncacheable requests (or rather their corresponding request packets) to bus snoopers. These packets should never have any effect on the caches, and thus there is no need to forward them to the snoopers.
2012-05-04Ruby: Ensure snoop requests are sent using sendTimingSnoopReqAndreas Hansson
This patch fixes a bug that caused snoop requests to be placed in a packet queue. Instead, the packet is now sent immediately using sendTimingSnoopReq, thus bypassing the packet queue and any normal responses waiting to be sent.
2012-05-01MEM: Separate requests and responses for timing accessesAndreas Hansson
This patch moves send/recvTiming and send/recvTimingSnoop from the Port base class to the MasterPort and SlavePort, and also splits them into separate member functions for requests and responses: send/recvTimingReq, send/recvTimingResp, and send/recvTimingSnoopReq, send/recvTimingSnoopResp. A master port sends requests and receives responses, and also receives snoop requests and sends snoop responses. A slave port has the reciprocal behaviour as it receives requests and sends responses, and sends snoop requests and receives snoop responses. For all MemObjects that have only master ports or slave ports (but not both), e.g. a CPU, or a PIO device, this patch merely adds more clarity to what kind of access is taking place. For example, a CPU port used to call sendTiming, and will now call sendTimingReq. Similarly, a response previously came back through recvTiming, which is now recvTimingResp. For the modules that have both master and slave ports, e.g. the bus, the behaviour was previously relying on branches based on pkt->isRequest(), and this is now replaced with a direct call to the apprioriate member function depending on the type of access. Please note that send/recvRetry is still shared by all the timing accessors and remains in the Port base class for now (to maintain the current bus functionality and avoid changing the statistics of all regressions). The packet queue is split into a MasterPort and SlavePort version to facilitate the use of the new timing accessors. All uses of the PacketQueue are updated accordingly. With this patch, the type of packet (request or response) is now well defined for each type of access, and asserts on pkt->isRequest() and pkt->isResponse() are now moved to the appropriate send member functions. It is also worth noting that sendTimingSnoopReq no longer returns a boolean, as the semantics do not alow snoop requests to be rejected or stalled. All these assumptions are now excplicitly part of the port interface itself.
2012-04-29X86: Fix the IMUL_R_P_I macroop.Gabe Black
The disp displacement was left off the load microop so the wrong value was used.
2012-04-29X86: Fix up the open system call's flags.Vince Weaver
2012-04-29X86: Make gem5 ignore a bunch of syscalls.Vince Weaver
2012-04-28Garnet: Correct computation of link utilizationNilay Vaish
The computation for link utilization was incorrect for the flexible network. The utilization was being divided twice by the total time.
2012-04-25Ruby: Remove extra statements from SequencerNilay Vaish
2012-04-25MEM: Use base class Master/SlavePort pointers in the busAndreas Hansson
This patch makes some rather trivial simplifications to the bus in that it changes the use of BusMasterPort and BusSlavePort pointers to simply use MasterPort and SlavePort (iterators are also updated accordingly). This change is a step towards a future patch that introduces a separation of the interface and the structural port itself.
2012-04-25MEM: Add the PortId type and a corresponding id field to PortAndreas Hansson
This patch introduces the PortId type, moves the definition of INVALID_PORT_ID to the Port class, and also gives every port an id to reflect the fact that each element in a vector port has an identifier/index. Previously the bus and Ruby testers (and potentially other users of the vector ports) added the id field in their port subclasses, and now this functionality is always present as it is moved to the base class.
2012-04-25clang/gcc: Use STL hash function for int64_t and uint64_tAndreas Hansson
This patch changes the guards for the definition of hash functions to also exclude the int64_t and uint64_t hash functions in the case we are using the c++0x STL <unordered_map> (and <hash>) or the TR1 version of the same header. Previously the guard only covered the hash function for strings, but it seems there is also no need to define a hash for the 64-bit integer types, and this has caused problems with builds on 32-bit Ubuntu.
2012-04-24X86: Clear out duplicate TLB entries when adding a new one.Gabe Black
It's possible for two page table walks to overlap which will go in the same place in the TLB's trie. They would land on top of each other, so this change adds some code which detects if an address already matches an entry and if so throws away the new one.
2012-04-23ISA: Put parser generated files in a "generated" directory.Gabe Black
This is to avoid collision with non-generated files.
2012-04-22base: Include cassert in trie.hh.Gabe Black
trie.hh uses assert, but it wasn't explicitly including cassert.
2012-04-21X86: Report an error if there's no kernel object, don't blindly use it.Gabe Black
This way the user gets a nice message instead of a less nice segfault.
2012-04-15CPU: Tidy up some formatting and a DPRINTF in the simple CPU base class.Gabe Black
Put the { on the same line as the if and put a space between the if and the open paren. Also, use the # format modifier which puts a 0x in front of hex values automatically. If the ExtMachInst type isn't integral and actually prints something more complicated, the # falls away harmlessly and we aren't left with a phantom 0x followed by a bunch of unrelated text.
2012-04-15X86: Fix a tiny typo in the load/store microop constructor.Gabe Black
The parameter is _machInst, which is very similar to the member machInst. If machInst is used to pass the parameter to a lower level constructor, what really happens is that machInst is set to whatever it already happened to be, effectively leaving it uninitialized.
2012-04-14X86: Use the AddrTrie class to implement the TLB.Gabe Black
This change also adjusts the TlbEntry class so that it stores the number of address bits wide a page is rather than its size in bytes. In other words, instead of storing 4K for a 4K page, it stores 12. 12 is easy to turn into 4K, but it's a little harder going the other way.
2012-04-14sim: Update some comments in trie.hh that were meant to go in the last change.Gabe Black
2012-04-14sim: A trie data structure specifically to speed up paging lookups.Gabe Black
This change adds a trie data structure which stores an arbitrary pointer type based on an address and a number of relevant bits. Then lookups can be done against the trie where the tree is traversed and the first legitimate match found is returned.
2012-04-14Ruby: Use MasterPort base-class pointers where possibleAndreas Hansson
This patch simplifies future patches by changing the pointer type used in a number of the Ruby testers to use MasterPort instead of using a derived CpuPort class. There is no reason for using the more specialised pointers, and there is no longer a need to do any casting. With the latest changes to the tester, organising ports as readers and writes, things got a bit more complicated, and the "type" now had to be removed to be able to fall back to using MasterPort rather than CpuPort.
2012-04-14MEM: Remove the Broadcast destination from the packetAndreas Hansson
This patch simplifies the packet by removing the broadcast flag and instead more firmly relying on (and enforcing) the semantics of transactions in the classic memory system, i.e. request packets are routed from a master to a slave based on the address, and when they are created they have neither a valid source, nor destination. On their way to the slave, the request packet is updated with a source field for all modules that multiplex packets from multiple master (e.g. a bus). When a request packet is turned into a response packet (at the final slave), it moves the potentially populated source field to the destination field, and the response packet is routed through any multiplexing components back to the master based on the destination field. Modules that connect multiplexing components, such as caches and bridges store any existing source and destination field in the sender state as a stack (just as before). The packet constructor is simplified in that there is no longer a need to pass the Packet::Broadcast as the destination (this was always the case for the classic memory system). In the case of Ruby, rather than using the parameter to the constructor we now rely on setDest, as there is already another three-argument constructor in the packet class. In many places where the packet information was printed as part of DPRINTFs, request packets would be printed with a numeric "dest" that would always be -1 (Broadcast) and that field is now removed from the printing.
2012-04-14MEM: Separate snoops and normal memory requests/responsesAndreas Hansson
This patch introduces port access methods that separates snoop request/responses from normal memory request/responses. The differentiation is made for functional, atomic and timing accesses and builds on the introduction of master and slave ports. Before the introduction of this patch, the packets belonging to the different phases of the protocol (request -> [forwarded snoop request -> snoop response]* -> response) all use the same port access functions, even though the snoop packets flow in the opposite direction to the normal packet. That is, a coherent master sends normal request and receives responses, but receives snoop requests and sends snoop responses (vice versa for the slave). These two distinct phases now use different access functions, as described below. Starting with the functional access, a master sends a request to a slave through sendFunctional, and the request packet is turned into a response before the call returns. In a system without cache coherence, this is all that is needed from the functional interface. For the cache-coherent scenario, a slave also sends snoop requests to coherent masters through sendFunctionalSnoop, with responses returned within the same packet pointer. This is currently used by the bus and caches, and the LSQ of the O3 CPU. The send/recvFunctional and send/recvFunctionalSnoop are moved from the Port super class to the appropriate subclass. Atomic accesses follow the same flow as functional accesses, with request being sent from master to slave through sendAtomic. In the case of cache-coherent ports, a slave can send snoop requests to a master through sendAtomicSnoop. Just as for the functional access methods, the atomic send and receive member functions are moved to the appropriate subclasses. The timing access methods are different from the functional and atomic in that requests and responses are separated in time and send/recvTiming are used for both directions. Hence, a master uses sendTiming to send a request to a slave, and a slave uses sendTiming to send a response back to a master, at a later point in time. Snoop requests and responses travel in the opposite direction, similar to what happens in functional and atomic accesses. With the introduction of this patch, it is possible to determine the direction of packets in the bus, and no longer necessary to look for both a master and a slave port with the requested port id. In contrast to the normal recvFunctional, recvAtomic and recvTiming that are pure virtual functions, the recvFunctionalSnoop, recvAtomicSnoop and recvTimingSnoop have a default implementation that calls panic. This is to allow non-coherent master and slave ports to not implement these functions.