Age | Commit message (Collapse) | Author |
|
--HG--
rename : src/dev/CopyEngine.py => src/dev/pci/CopyEngine.py
rename : src/dev/copy_engine.cc => src/dev/pci/copy_engine.cc
rename : src/dev/copy_engine.hh => src/dev/pci/copy_engine.hh
rename : src/dev/copy_engine_defs.hh => src/dev/pci/copy_engine_defs.hh
|
|
Move pcidev.(hh|cc) to src/dev/pci/device.(hh|cc) and update existing
devices to use the new header location. This also renames the PCIDEV
debug flag to have a capitalization that is consistent with the PCI
host and other devices.
--HG--
rename : src/dev/Pci.py => src/dev/pci/PciDevice.py
rename : src/dev/pcidev.cc => src/dev/pci/device.cc
rename : src/dev/pcidev.hh => src/dev/pci/device.hh
rename : src/dev/pcireg.h => src/dev/pci/pcireg.h
|
|
The writefile pseudo instruction uses OutputDirectory::create and
OutputDirectory::openFile to create the output files. However, by
default these will check the file extention for .gz, and create a gzip
compressed stream if the file ending matches. When writing out files,
we want to write them out exactly as they are in the guest simulation,
and never want to compress them with gzio. Additionally, this causes
m5 writefile to fail when checking the error flags for the output
steam.
With this patch we add an additional no_gz argument to
OutputDirectory::create and OutputDirectory::openFile which allows us
to override the gzip compression. Therefore, for m5 writefile we
disable the filename check, and always create a standard ostream.
|
|
Previous ARM-based simulations were limited to 8 cores due to
limitations in GICv2 and earlier. This changeset adds a set of
gem5-specific extensions that enable support for up to 256 cores.
When the gem5 extensions are enabled, the GIC uses CPU IDs instead of
a CPU bitmask in the GIC's register interface. To OS can enable the
extensions by setting bit 0x200 in ICDICTR.
This changeset is based on previous work by Matt Evans.
|
|
|
|
There's a well-meaning check in Process::allocFD() to return an invalid
target fd (-1) if the incoming host fd is -1. However, this means that
emulated drivers, which want to allocate a target fd that doesn't
correspond to a host fd, can't use -1 to indicate an intentionally
invalid host fd.
It turns out the allocFD() check is redundant, as callers always test
the host fd for validity before calling. Also, callers never test the
return value of allocFD() for validity, so even if the test failed,
it would likely have the undesirable result of returning -1 to the
target app as a file descriptor without setting errno.
Thus the check is pointless and is now getting in the way, so it seems
we should just get rid of it.
|
|
This patch adds support to optionally capture the virtual address and asid
for load/store instructions in the elastic traces. If they are present in
the traces, Trace CPU will set those fields of the request during replay.
|
|
This patch replaces the booleans that specified the elastic trace record
type with an enum type. The source of change is the proto message for
elastic trace where the enum is introduced. The struct definitions in the
elastic trace probe listener as well as the Trace CPU replace the boleans
with the proto message enum.
The patch does not impact functionality, but traces are not compatible with
previous version. This is preparation for adding new types of records in
subsequent patches.
|
|
This patch defines a TraceCPU that replays trace generated using the elastic
trace probe attached to the O3 CPU model. The elastic trace is an execution
trace with data dependencies and ordering dependencies annoted to it. It also
replays fixed timestamp instruction fetch trace that is also generated by the
elastic trace probe.
The TraceCPU inherits from BaseCPU as a result of which some methods need
to be defined. It has two port subclasses inherited from MasterPort for
instruction and data ports. It issues the memory requests deducing the
timing from the trace and without performing real execution of micro-ops.
As soon as the last dependency for an instruction is complete,
its computational delay, also provided in the input trace is added. The
dependency-free nodes are maintained in a list, called 'ReadyList',
ordered by ready time. Instructions which depend on load stall until the
responses for read requests are received thus achieving elastic replay. If
the dependency is not found when adding a new node, it is assumed complete.
Thus, if this node is found to be completely dependency-free its issue time is
calculated and it is added to the ready list immediately. This is encapsulated
in the subclass ElasticDataGen.
If ready nodes are issued in an unconstrained way there can be more nodes
outstanding which results in divergence in timing compared to the O3CPU.
Therefore, the Trace CPU also models hardware resources. A sub-class to model
hardware resources is added which contains the maximum sizes of load buffer,
store buffer and ROB. If resources are not available, the node is not issued.
The 'depFreeQueue' structure holds nodes that are pending issue.
Modeling the ROB size in the Trace CPU as a resource limitation is arguably the
most important parameter of all resources. The ROB occupancy is estimated using
the newly added field 'robNum'. We need to use ROB number as sequence number is
at times much higher due to squashing and trace replay is focused on correct
path modeling.
A map called 'inFlightNodes' is added to track nodes that are not only in
the readyList but also load nodes that are executed (and thus removed from
readyList) but are not complete. ReadyList handles what and when to execute
next node while the inFlightNodes is used for resource modelling. The oldest
ROB number is updated when any node occupies the ROB or when an entry in the
ROB is released. The ROB occupancy is equal to the difference in the ROB number
of the newly dependency-free node and the oldest ROB number in flight.
If no node dependends on a non load/store node then there is no reason to track
it in the dependency graph. We filter out such nodes but count them and add a
weight field to the subsequent node that we do include in the trace. The weight
field is used to model ROB occupancy during replay.
The depFreeQueue is chosen to be FIFO so that child nodes which are in
program order get pushed into it in that order and thus issued in the in
program order, like in the O3CPU. This is also why the dependents is made a
sequential container, std::set to std::vector. We only check head of the
depFreeQueue as nodes are issued in order and blocking on head models that
better than looping the entire queue. An alternative choice would be to inspect
top N pending nodes where N is the issue-width. This is left for future as the
timing correlation looks good as it is.
At the start of an execution event, first we attempt to issue such pending
nodes by checking if appropriate resources have become available. If yes, we
compute the execute tick with respect to the time then. Then we proceed to
complete nodes from the readyList.
When a read response is received, sometimes a dependency on it that was
supposed to be released when it was issued is still not released. This occurs
because the dependent gets added to the graph after the read was sent. So the
check is made less strict and the dependency is marked complete on read
response instead of insisting that it should have been removed on read sent.
There is a check for requests spanning two cache lines as this condition
triggers an assert fail in the L1 cache. If it does then truncate the size
to access only until the end of that line and ignore the remainder.
Strictly-ordered requests are skipped and the dependencies on such requests
are handled by simply marking them complete immediately.
The simulated seconds can be calculated as the difference between the
final_tick stat and the tickOffset stat. A CountedExitEvent that contains
a static int belonging to the Trace CPU class as a down counter is used to
implement multi Trace CPU simulation exit.
|
|
This patch adds the instruction sequence number to the request and provides a
request constructor that accepts a sequence number for initialization.
|
|
The elastic trace is a type of probe listener and listens to probe points
in multiple stages of the O3CPU. The notify method is called on a probe
point typically when an instruction successfully progresses through that
stage.
As different listener methods mapped to the different probe points execute,
relevant information about the instruction, e.g. timestamps and register
accesses, are captured and stored in temporary InstExecInfo class objects.
When the instruction progresses through the commit stage, the timing and the
dependency information about the instruction is finalised and encapsulated in
a struct called TraceInfo. TraceInfo objects are collected in a list instead
of writing them out to the trace file one a time. This is required as the
trace is processed in chunks to evaluate order dependencies and computational
delay in case an instruction does not have any register dependencies. By this
we achieve a simpler algorithm during replay because every record in the
trace can be hooked onto a record in its past. The instruction dependency
trace is written out as a protobuf format file. A second trace containing
fetch requests at absolute timestamps is written to a separate protobuf
format file.
If the instruction is not executed then it is not added to the trace.
The code checks if the instruction had a fault, if it predicated
false and thus previous register values were restored or if it was a
load/store that did not have a request (e.g. when the size of the
request is zero). In all these cases the instruction is set as
executed by the Execute stage and is picked up by the commit probe
listener. But a request is not issued and registers are not written.
So practically, skipping these should not hurt the dependency modelling.
If squashing results in squashing younger instructions, it may happen that
the squash probe discards the inst and removes it from the temporary
store but execute stage deals with the instruction in the next cycle which
results in the execute probe seeing this inst as 'new' inst. A sequence
number of the last processed trace record is used to trap these cases and
not add to the temporary store.
The elastic instruction trace and fetch request trace can be read in and
played back by the TraceCPU.
|
|
This patch adds probe points in Fetch, IEW, Rename and Commit stages as follows.
A probe point is added in the Fetch stage for probing when a fetch request is
sent. Notify is fired on the probe point when a request is sent succesfully in
the first attempt as well as on a retry attempt.
Probe points are added in the IEW stage when an instruction begins to execute
and when execution is complete. This points can be used for monitoring the
execution time of an instruction.
Probe points are added in the Rename stage to probe renaming of source and
destination registers and when there is squashing. These probe points can be
used to track register dependencies and remove when there is squashing.
A probe point for squashing is added in Commit to probe squashed instructions.
|
|
The gem5's current PCI host functionality is very ad hoc. The current
implementations require PCI devices to be hooked up to the
configuration space via a separate configuration port. Devices query
the platform to get their config-space address range. Un-mapped parts
of the config space are intercepted using the XBar's default port
mechanism and a magic catch-all device (PciConfigAll).
This changeset redesigns the PCI host functionality to improve code
reuse and make config-space and interrupt mapping more
transparent. Existing platform code has been updated to use the new
PCI host and configured to stay backwards compatible (i.e., no
guest-side visible changes). The current implementation does not
expose any new functionality, but it can easily be extended with
features such as automatic interrupt mapping.
PCI devices now register themselves with a PCI host controller. The
host controller interface is defined in the abstract base class
PciHost. Registration is done by PciHost::registerDevice() which takes
the device, its bus position (bus/dev/func tuple), and its interrupt
pin (INTA-INTC) as a parameter. The registration interface returns a
PciHost::DeviceInterface that the PCI device can use to query memory
mappings and signal interrupts.
The host device manages the entire PCI configuration space. Accesses
to devices decoded into the devices bus position and then forwarded to
the correct device.
Basic PCI host functionality is implemented in the GenericPciHost base
class. Most platforms can use this class as a basic PCI controller. It
provides the following functionality:
* Configurable configuration space decoding. The number of bits
dedicated to a device is a prameter, making it possible to support
both CAM, ECAM, and legacy mappings.
* Basic interrupt mapping using the interruptLine value from a
device's configuration space. This behavior is the same as in the
old implementation. More advanced controllers can override the
interrupt mapping method to dynamically assign host interrupts to
PCI devices.
* Simple (base + addr) remapping from the PCI bus's address space to
physical addresses for PIO, memory, and DMA.
|
|
The assert in lsq_unit_impl.hh line 963 needs pktPending to be initialized to
NULL (I got the assertion failure several times without the fix).
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
The last SimObject using the legacy serialize API with non-const
methods has now been transitioned to the new API. This changeset
removes the serializeOld() methods from the serialization base class
as they are no longer used.
|
|
Add support for automatically discover available platforms. The
Python-side uses functionality similar to what we use when
auto-detecting available CPU models. The machine IDs have been updated
to match the platform configurations. If there isn't a matching
machine ID, the configuration scripts default to -1 which Linux uses
for device tree only platforms.
|
|
The HDLCD model implements a workaround that swaps the red and blue
channels. This works around an issue in certain old kernels. The new
driver doesn't seem to have this behavior, so disable the workaround
by default and enable it in the affected platforms.
|
|
Devices behind the Versatile Express configuration controllers are
currently all lumped into one SimObject. This will make DTB generation
challenging since the DTB assumes them to be in different parts of the
hierarchy. It also makes it hard to model other CoreTiles without also
replicating devices from the motherboard.
This changeset splits the VExpressCoreTileCtrl into two subsystems:
VExpressMCC for all motherboard-related devices and CoreTile2A15DCC
for Core Tile specific devices.
|
|
Add functionality to generate a back trace if gem5 crashes (SIGABRT or
SIGSEGV). The current implementation uses glibc's stack traversal
support if available and stubs out the call to print_backtrace()
otherwise.
|
|
Add support for automatically selecting a boot loader that matches the
guest system's kernel. Instead of accepting a single boot loader, the
ArmSystem class now accepts a vector of boot loaders. When
initializing a system, the we now look for the first boot loader with
an architecture that matches the kernel.
This changeset makes it possible to use the same system for both
64-bit and 32-bit kernels.
|
|
The MaltaPChip class is currently unused and identical (except for the
class name) to the TsunamiPChip. If someone decides to implement PCI
for Malta, they should make sure to share code with the Tsunami
implementation if they are similar.
|
|
The gem5 option '--list-sim-objects' is supposed to list all available
SimObjects and their parameters. It currently chokes on SimObjects
with parameters that have an object instance as their default
value. This is caused by __str__ in SimObject trying to resolve its
complete path. When the path resolution method reaches the parent
object (a MetaSimObject since it hasn't been instantiated), it dies
with a Python exception.
This changeset adds a guard to stop path resolution if the parent
object is a MetaSimObject.
|
|
--HG--
extra : rebase_source : 64046371962e98413757bc3ab0c0d48dfb11ff1e
|
|
Fix a number of unintentional insertions of 'const'.
|
|
Added the missing types EthernetAddr and Current to the JSON/INI file
reader example configs/example/read_config.py.
Also added __str__ to EthernetAddr to make values appear in the same form
in JSON an INI files.
|
|
The flash model has typos in its serialization code for
unknownPages, locationTable, blockValidEntries, and blockEmptyEntries
arrays where it would save each entry in the array under the same
name in the checkpoint. This patch fixes these typos.
|
|
Note that the method is not used, and could possibly be deleted.
|
|
Appease clang.
|
|
In cases where we discard the packet, make sure to also delete it and
the associated request.
|
|
Consider it a fatal configuration error if the number of interrupt
controllers doesn't match the number of threads in an SMT
configuration.
|
|
--HG--
extra : amend_source : c51de9ae5387aba6fae8403677054678beceb2ab
|
|
As per the x86 architecture specification, matching TLB entries need to be
invalidated on a page fault. For instance, after a page fault due to inadequate
protection bits on a TLB hit, the TLB entry needs to be invalidated. This
behavior is clearly specified in the x86 architecture manuals from both AMD and
Intel. This invalidation is missing currently in gem5, due to which linux
kernel versions 3.8 and up cannot be simulated efficiently. This is exposed by
a linux optimisation in commit e4a1cc56e4d728eb87072c71c07581524e5160b1, which
removes a tlb flush on updating page table entries in x86.
Testing: Linux kernel versions 3.8 onwards were booting very slowly in FS mode,
due to repeated page faults (~300000 before the first print statement in a
bash file). Ensured that page fault rate drops drastically and observed
reduction in boot time from order of hours to minutes for linux kernel v3.8
and v3.11
|
|
doCpuid() has to identical warn messages about unimplemented functions. Add
the family to the log message to make them distinguishable.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
|
|
Remove sparc V8 TBR register from list of registers since it is not part of
sparc V9. This brings the number of registers in sync with what gdb expects
Without this patch gdb complains about receoved packet too long.
with this patch gdb is able to work properly with gem5 for remote debugging.
Note: gdb is version 7.8
Note: gdb is configured with --target=sparc64-sun-solaris2.8
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
|
|
Make clang when compiling on OSX.
|
|
|
|
misc changes now that Address has become Addr including int to address util
function
|
|
The BoolVec typedef and insertion operator overload function simplify usage of
vectors of type bool
|
|
the sanity check, while generally useful for exposing memory system bugs,
may be spurious with respect to GPU workloads, which may generate many more
requests than typical CPU workloads. the large number of requests generated
by the GPU may cause the req/resp queues to back up, thus queueing more than
100 packets.
|
|
The IICRPR register in the GIC is currently not being initialized when
the GIC is instantiated. Initialize to the value mandated by the
architecture specification.
|
|
This patch adds very basic checkpoint support for the VirtIO9PProxy
device. Previously, attempts to checkpoint gem5 with a present 9P
device caused gem5 to fatal as none of the state is tracked. We still
do not track any state, but we replace the fatal with a warning which
is triggered if the device has been used by the guest system. In the
event that it has not been used, we assume that no state is lost
during checkpointing. The warning is triggered on both a serialize and
an unserialize to ensure maximum visibility for the user.
|
|
Devices should never need to include dev/pciconfall.hh.
--HG--
extra : amend_source : 3a6e56485d432b49e2af22407982fa785c0ccb68
|
|
Cleanup PCI devices to avoid using the PciDevice::platform pointer
directly. The PCI-specific functionality provided by the Platform
should be accessed through the wrappers in PciDevice.
|
|
This patch adds the necessary commands and cache functionality to
allow clean writebacks. This functionality is crucial, especially when
having exclusive (victim) caches. For example, if read-only L1
instruction caches are not sending clean writebacks, there will never
be any spills from the L1 to the L2. At the moment the cache model
defaults to not sending clean writebacks, and this should possibly be
re-evaluated.
The implementation of clean writebacks relies on a new packet command
WritebackClean, which acts much like a Writeback (renamed
WritebackDirty), and also much like a CleanEvict. On eviction of a
clean block the cache either sends a clean evict, or a clean
writeback, and if any copies are still cached upstream the clean
evict/writeback is dropped. Similarly, if a clean evict/writeback
reaches a cache where there are outstanding MSHRs for the block, the
packet is dropped. In the typical case though, the clean writeback
allocates a block in the downstream cache, and marks it writable if
the evicted block was writable.
The patch changes the O3_ARM_v7a L1 cache configuration and the
default L1 caches in config/common/Caches.py
|
|
This patch adds a parameter to control the cache clusivity, that is if
the cache is mostly inclusive or exclusive. At the moment there is no
intention to support strict policies, and thus the options are: 1)
mostly inclusive, or 2) mostly exclusive.
The choice of policy guides the behaviuor on a cache fill, and a new
helper function, allocOnFill, is created to encapsulate the decision
making process. For the timing mode, the decision is annotated on the
MSHR on sending out the downstream packet, and in atomic we directly
pass the decision to handleFill. We (ab)use the tempBlock in cases
where we are not allocating on fill, leaving the rest of the cache
unaffected. Simple and effective.
This patch also makes it more explicit that multiple caches are
allowed to consider a block writable (this is the case
also before this patch). That is, for a mostly inclusive cache,
multiple caches upstream may also consider the block exclusive. The
caches considering the block writable/exclusive all appear along the
same path to memory, and from a coherency protocol point of view it
works due to the fact that we always snoop upwards in zero time before
querying any downstream cache.
Note that this patch does not introduce clean writebacks. Thus, for
clean lines we are essentially removing a cache level if it is made
mostly exclusive. For example, lines from the read-only L1 instruction
cache or table-walker cache are always clean, and simply get dropped
rather than being passed to the L2. If the L2 is mostly exclusive and
does not allocate on fill it will thus never hold the line. A follow
on patch adds the clean writebacks.
The patch changes the L2 of the O3_ARM_v7a CPU configuration to be
mostly exclusive (and stats are affected accordingly).
|
|
This patch optimises the handling of writebacks and clean evictions
when using a snoop filter. Instead of snooping into the caches to
determine if the block is cached or not, simply set the status based
on the snoop-filter result.
|
|
Instead of conservatively enforcing order for all packets, which may
negatively impact the simulated-system performance, this patch updates
the packet queue such that it only applies the restriction if there
are already packets with the same address in the queue.
The basic need for the order enforcement is due to coherency
interactions where requests/responses to the same cache line must not
over-take each other. We rely on the fact that any packet that needs
order enforcement will have a block-aligned address. Thus, there is no
need for the queue to know about the cacheline size.
|
|
This patch enforces insertion order transmission of packets on the
response path in the cache. Note that the logic to enforce order is
already present in the packet queue, this patch simply turns it on for
queues in the response path.
Without this patch, there are corner cases where a request-response is
faster than a response-response forwarded through the cache. This
violation of queuing order causes problems in the snoop filter leaving
it with inaccurate information. This causes assert failures in the
snoop filter later on.
A follow on patch relaxes the order enforcement in the packet queue to
limit the performance impact.
|