Age | Commit message (Collapse) | Author |
|
The ISA code sometimes stores 16-bit ASIDs as 8-bit unsigned integers
and has a couple of inverted checks that mask out the high 8 bits of
an ASID if 16-bit ASIDs have been /enabled/. This changeset fixes both
of those issues.
|
|
We curently use INTREG_X31 instead of INTREG_SPX when accessing the
stack pointer in GDB. gem5 normally uses INTREG_SPX to access the
stack pointer, which gets mapped to the stack pointer corresponding
(INTREG_SPn) to the current exception level. This changeset updates
the GDB interface to use SPX instead of X31 (which is always zero)
when transfering CPU state to gdb.
|
|
The remote GDB interface currently doesn't check if translations are
valid before reading memory. This causes a panic when GDB tries to
access unmapped memory (e.g., when getting a stack trace). There are
two reasons for this: 1) The function used to check for valid
translations (virtvalid()) doesn't work and panics on invalid
translations. 2) The method in the GDB interface used to test if a
translation is valid (RemoteGDB::acc) always returns true regardless
of the return from virtvalid().
This changeset fixes both of these issues.
|
|
Previously, the user would have to manually set access_backing_store=True
on all RubyPorts (Sequencers) in the config files.
Now, instead there is one global option that each RubyPort checks on
initialization.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
To be able to use the TrafficGen in a system with caches we need to
allow it to sink incoming snoop requests. By default the master port
panics, so silently ignore any snoops.
|
|
In highly loaded cases, reads might actually overlap with writes to the
initial memory state. The mem checker needs to detect such cases and
permit the read reading either from the writes (what it is doing now) or
read from the initial, unknown value.
This patch adds this logic.
|
|
This patch fixes a rather unfortunate oversight where the annotation
pointer was used even though it is null. Somehow the code still works,
but UBSan is rather unhappy. The use is now guarded, and the variable
is initialised in the constructor (as well as init()).
|
|
Move the (common) GIC initialization code that notifies the platform
code of the new GIC to the base class (BaseGic) instead of the Pl390
implementation.
|
|
This patch ensures we can run simulations with very large simulated
memories (at least 64 TB based on some quick runs on a Linux
workstation). In essence this allows us to efficiently deal with
sparse address maps without having to implement a redirection layer in
the backing store.
This opens up for run-time errors if we eventually exhausts the hosts
memory and swap space, but this should hopefully never happen.
|
|
This patch changes the range cache used in the global physical memory
to be an iterator so that we can use it not only as part of isMemAddr,
but also access and functionalAccess. This matches use-cases where a
core is using the atomic non-caching memory mode, and repeatedly calls
isMemAddr and access.
Linux boot on aarch32, with a single atomic CPU, is now more than 30%
faster when using "--fastmem" compared to not using the direct memory
access.
|
|
Finally took the plunge and made this apply to all ISAs, not just ARM.
|
|
This changeset moves the pseudo instructions used to signal unknown
instructions and unimplemented instructions to the same source files
as the decoder fault.
|
|
Doesn't support x86 due to static instruction representation.
--HG--
rename : src/cpu/CPUTracers.py => src/cpu/InstPBTrace.py
|
|
This patch clarifies the packet timings annotated
when going through a crossbar.
The old 'firstWordDelay' is replaced by 'headerDelay' that represents
the delay associated to the delivery of the header of the packet.
The old 'lastWordDelay' is replaced by 'payloadDelay' that represents
the delay needed to processing the payload of the packet.
For now the uses and values remain identical. However, going forward
the payloadDelay will be additive, and not include the
headerDelay. Follow-on patches will make the headerDelay capture the
pipeline latency incurred in the crossbar, whereas the payloadDelay
will capture the additional serialisation delay.
|
|
This patch adds some much-needed clarity in the specification of the
cache timing. For now, hit_latency and response_latency are kept as
top-level parameters, but the cache itself has a number of local
variables to better map the individual timing variables to different
behaviours (and sub-components).
The introduced variables are:
- lookupLatency: latency of tag lookup, occuring on any access
- forwardLatency: latency that occurs in case of outbound miss
- fillLatency: latency to fill a cache block
We keep the existing responseLatency
The forwardLatency is used by allocateInternalBuffer() for:
- MSHR allocateWriteBuffer (unchached write forwarded to WriteBuffer);
- MSHR allocateMissBuffer (cacheable miss in MSHR queue);
- MSHR allocateUncachedReadBuffer (unchached read allocated in MSHR
queue)
It is our assumption that the time for the above three buffers is the
same. Similarly, for snoop responses passing through the cache we use
forwardLatency.
|
|
The MemTest class really only tests false sharing, and as such there
was a lot of old cruft that could be removed. This patch cleans up the
tester, and also makes it more clear what the assumptions are. As part
of this simplification the reference functional memory is also
removed.
The regression configs using MemTest are updated to reflect the
changes, and the stats will be bumped in a separate patch. The example
config will be updated in a separate patch due to more extensive
re-work.
In a follow-on patch a new tester will be introduced that uses the
MemChecker to implement true sharing.
|
|
The TLB-related code is generally architecture dependent and should
live in the arch directory to signify that.
--HG--
rename : src/sim/BaseTLB.py => src/arch/generic/BaseTLB.py
rename : src/sim/tlb.cc => src/arch/generic/tlb.cc
rename : src/sim/tlb.hh => src/arch/generic/tlb.hh
|
|
Gcc and clang both provide an attribute that can be used to flag a
function as deprecated at compile time. This changeset adds a gem5
compiler macro for that compiler feature. The macro can be used to
indicate that a legacy API within gem5 has been deprecated and provide
a graceful migration to the new API.
|
|
This patch fixes the CompoundFlag constructor, ensuring that it does
not dereference NULL. Doing so has undefined behaviuor, and both clang
and gcc's undefined-behaviour sanitiser was rather unhappy.
|
|
The Platform base class contains a pointer to an instance of the
System which is never initialized. This can lead to subtle bugs since
some architecture-specific platform implementations contain their own
system pointer which is normally used. However, if the platform is
accessed through a pointer to its base class, the dangling pointer
will be used instead.
|
|
This patch sets the CPU status to idle when the last active thread gets
suspended.
|
|
This patch adds a bit of documentation with insights around how
express snoops really work.
|
|
This patch adds a bit of clarification around the assumptions made in
the cache when packets are sent out, and dirty responses are
pending. As part of the change, the marking of an MSHR as in service
is simplified slightly, and comments are added to explain what
assumptions are made.
|
|
|
|
This patch extends the current address interleaving with basic hashing
support. Instead of directly comparing a number of address bits with a
matching value, it is now possible to use two independent set of
address bits XOR'ed together. This avoids issues where strided address
patterns are heavily biased to a subset of the interleaved ranges.
|
|
This patch changes the DRAM channel interleaving default behaviour to
be more representative. The default address mapping (RoRaBaCoCh) moves
the channel bits towards the least significant bits, and uses 128 byte
as the default channel interleaving granularity.
These defaults can be overridden if desired, but should serve as a
sensible starting point for most use-cases.
|
|
The method Event::initialized() tests if this != NULL as a part of the
expression that tests if an event is initialized. The only case when
this check could be false is if the method is called on a null
pointer, which is illegal and leads to undefined behavior (such as
eating your pets) according to the C++ standard. Because of this,
modern compilers (specifically, recent versions of clang) warn about
this which we treat as an error. This changeset removes the redundant
check to fix said warning.
|
|
Correctly clear the PCI interrupt belonging to a VirtIO device when
the ISR register is read.
|
|
If a time quantum event is the only one in the queue, async
events (Ctrl-C, I/O, etc.) will never be processed.
So process them first.
|
|
This patch changes how the timing CPU deals with processing responses,
always scheduling an event, even if it is for the current tick. This
helps to avoid situations where a new request shows up before a
response is finished in the crossbar, and also is more in line with
any realistic behaviour.
|
|
The Float param was not settable on the command line
due to a typo in the class definition in
python/m5/params.py. This corrects the typo and allows
floats to be set on the command line as intended.
|
|
While the IsFirstMicroop flag exists it was only occasionally used in the ARM
instructions that gem5 microOps and therefore couldn't be relied on to be correct.
|
|
Track memory size and flags as well as add some comments and consts.
|
|
We have no way of knowing if a CPU model is on the wrong path with
our execute-in-execute CPU models. Don't pretend that we do.
|
|
|
|
If someone wants to debug with legion again they can restore the
code from the repository, but no need to have it hang around indefinately.
|
|
When gem5 is a slave to another simulator and the Python is only used
to initialize the configuration (and not perform actual simulation), a
"debug start" (--debug-start) event will get freed during or immediately
after the initial Python frame's execution rather than remaining in the
event queue. This tricky patch fixes the GC issue causing this.
|
|
This patch takes the final step in removing the src and dest fields in
the packet. These fields were rather confusing in that they only
remember a single multiplexing component, and pushed the
responsibility to the bridge and caches to store the fields in a
senderstate, thus effectively creating a stack. With the recent
changes to the crossbar response routing the crossbar is now
responsible without relying on the packet fields. Thus, these
variables are now unused and can be removed.
|
|
This patch removes the source field from the ForwardResponseRecord,
but keeps the class as it is part of how the cache identifies
responses to hardware prefetches that are snooped upwards.
|
|
This patch removes the bridge sender state as the Crossbar now takes
care of remembering its own routing decisions.
|
|
This patch aligns how the response routing is done in the RubyPort,
using the SenderState for both memory and I/O accesses. Before this
patch, only the I/O used the SenderState, whereas the memory accesses
relied on the src field in the packet. With this patch we shift to
using SenderState in both cases, thus not relying on the src field any
longer.
|
|
This patch removes the need for a source and destination field in the
packet by shifting the onus of the tracking to the crossbar, much like
a real implementation. This change in behaviour also means we no
longer need a SenderState to remember the source/dest when ever we
have multiple crossbars in the system. Thus, the stack that was
created by the SenderState is not needed, and each crossbar locally
tracks the response routing.
The fields in the packet are still left behind as the RubyPort (which
also acts as a crossbar) does routing based on them. In the succeeding
patches the uses of the src and dest field will be removed. Combined,
these patches improve the simulation performance by roughly 2%.
|
|
This patch fixes a minor issue in the X86 page table walker where it
ended up sending new request packets to the crossbar before the
response processing was finished (recvTimingResp is directly calling
sendTimingReq). Under certain conditions this caused the crossbar to
see illegal combinations of request/response overlap, in turn causing
problems with a slightly modified crossbar implementation.
|
|
This patch tidies up how we create and set the fields of a Request. In
essence it tries to use the constructor where possible (as opposed to
setPhys and setVirt), thus avoiding spreading the information across a
number of locations. In fact, setPhys is made private as part of this
patch, and a number of places where we callede setVirt instead uses
the appropriate constructor.
|
|
The ppCommit should notify the attached listener every time the cpu commits
a microop or non microcoded insturction. The listener can then decide
whether it will process only the last microop (eg. SimPoint probe).
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
This patch ensures that inhibited packets that are about to be turned
into express snoops do not update the retry flag in the cache.
|
|
|
|
This patch fixes a bug where the DRAM controller tried to access the
system cacheline size before the system pointer was initialised. It
also fixes a bug where the granularity is 0 (no interleaving).
|
|
This patch corrects the FXSAVE and FXRSTOR Macroops. The actual code used for
saving/restore the FP registers is in the file but it was not used.
The FXSAVE and FXRSTOR instructions are used in the kernel for saving and
loading the state of the mmx,xmm and fpu registers.
This operation is triggered in FS by issuing a Device Not Available Fault. The
cr0 register has a TS flag that is set upon each context change. Every time a
task access any FP related register (SIMD as well) if the TS flag is set to
one, the device not available fault is issued. The kernel saves the current
state of the registers, and restore the previous state of the currently running
task.
Right now Gem5 lacks of this capability. the Device Not Available Fault is
never issued, leading to several problems when different threads share the same
CPU and SMT is not used. The PARSEC Ferret benchmark is an example of this
behavior.
In order to test this a hack in the atomic cpu code was done to detect if a
static instruction has any FP operands and the cr0 reg TS bit is set. This
check must be done in the ISA dependent code. But it seems to be tricky to
access the cr0 register while executing an instruction.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|