Age | Commit message (Collapse) | Author |
|
Prepare for a different implementation following in the next patch
|
|
This patch fixes a case where a store in Minor's store buffer never
leaves the store buffer as it is pre-maturely counted as having been
issued, leading to the store buffer idling.
LSQ::StoreBuffer::numUnissuedAccesses should count the number of accesses
either in memory, or still in the store buffer after being completed.
For stores which are also barriers, the store will stay in the store
buffer for a cycle after it is completed and will be cleaned up by the
barrier clearing code (to ensure that barriers are completed in-order).
To acheive this, numUnissuedAccesses is not decremented when a store-barrier
is issued to memory, but when its barrier effect is cleared.
Without this patch, the correct behaviour happens when a memory transaction
is immediately accepted, but not if it needs a retry.
|
|
This patch fixes the checking of the number of memory instructions issued
per cycles in the Minor CPU.
|
|
This patch fixes a case where the Minor CPU can deadlock due to the lack
of a response to TLB request because of a bug in fault handling in the ARM
table walker.
TableWalker::processWalkWrapper is the scheduler-called wrapper which
handles deferred walks which calls to TableWalker::wait cannot immediately
process. The handling of faults generated by processWalk{AArch64,LPAE,}
calls in those two functions is is different. processWalkWrapper ignores
fault returns from processWalk... which can lead to ::finish not being
called on a translation.
This fix provides fault handling in processWalkWrapper similar to that
found in the leaf functions which BaseTLB::Translation::finish.
|
|
In case the memory subsystem sends a combined response with invalidate
(e.g. ReadRespWithInvalidate), we cannot ignore the invalidate part
of the response.
If we were to ignore the invalidate part, under certain circumstances
this effectively leads to reordering of loads to the same address
which is not permitted under any memory consistency model implemented
in gem5.
Consider the case where a later load's address is computed before an
earlier load in program order, and is therefore sent to the memory
subsystem first. At some point the earlier load's address is computed
and in doing so correctly marks the later load as a
possibleLoadViolation. In the meantime some other node writes and
sends invalidations to all other nodes. The invalidation races with
the later load's ReadResp, and arrives before ReadResp and is
deferred. Upon receipt of the ReadResp, the response is changed to
ReadRespWithInvalidate, and sent to the CPU. If we ignore the
invalidate part of the packet, we let the later load read the old
value of the address. Eventually the earlier load's ReadResp arrives,
but with new data. As there was no invalidate snoop (sunk into the
ReadRespWithInvalidate), and if we did not process the invalidate of
the ReadRespWithInvalidate, we obtain a load reordering.
A similar scenario can be constructed where the earlier load's address
is computed after ReadRespWithInvalidate arrives for the younger
load. In this case hitExternalSnoop needs to be set to true on the
ReadRespWithInvalidate, so that upon knowing the address of the
earlier load, checkViolations will cause the later load to be
squashed.
Finally we must account for the case where both loads are sent to the
memory subsystem (reordered), a snoop invalidate arrives and correctly
sets the later loads fault to ReExec. However, before the CPU
processes the fault, the later load's ReadResp arrives and the
writeback discards the outstanding fault. We must add a check to
ensure that we do not skip any unprocessed faults.
|
|
Ensure the snoop address check is always using a cache-block aligned
address. This patch updates Alpha and Mips to match the other ISAs.
|
|
Move the packet deallocations in the O3 CPU so that the completeDataAccess
deals only with the LSQ specific parts and the generic recvTimingResp frees the
packet in all other cases.
|
|
This patch allows objects to get the src/dest of a packet even if it
is not set to a valid port id. This simplifies (ab)using the bridge as
a buffer and latency adapter in situations where the neighbouring
MemObjects are not crossbars.
The checks that were done in the packet are now shifted to the
crossbar where the fields are used to index into the port
arrays. Thus, the carrier of the information is not burdened with
checking, and the crossbar can check not only that the destination is
set, but also that the port index is within limits.
|
|
This patch attempts to make the rules for data allocation in the
packet explicit, understandable, and easy to verify. The constructor
that copies a packet is extended with an additional flag "alloc_data"
to enable the call site to explicitly say whether the newly created
packet is short-lived (a zero-time snoop), or has an unknown life-time
and therefore should allocate its own data (or copy a static pointer
in the case of static data).
The tricky case is the static data. In essence this is a
copy-avoidance scheme where the original source of the request (DMA,
CPU etc) does not ask the memory system to return data as part of the
packet, but instead provides a pointer, and then the memory system
carries this pointer around, and copies the appropriate data to the
location itself. Thus any derived packet actually never copies any
data. As the original source does not copy any data from the response
packet when arriving back at the source, we must maintain the copy of
the original pointer to not break the system. We might want to revisit
this one day and pay the price for a few extra memcpy invocations.
All in all this patch should make it easier to grok what is going on
in the memory system and how data is actually copied (or not).
|
|
This patch cleans up the use of hasData and checkFunctional in the
packet. The hasData function is unfortunately suggesting that it
checks if the packet has a valid data pointer, when it does in fact
only check if the specific packet type is specified to have a data
payload. The confusion led to a bug in checkFunctional. The latter
function is also tidied up to avoid name overloading.
|
|
This adds a basic level of sanity checking to the packet by ensuring
that a request is not modified once the packet is created. The only
issue that had to be worked around is the relaying of
software-prefetches in the cache. The specific situation is now solved
by first copying the request, and then creating a new packet
accordingly.
|
|
This patch tidies up the Request class, making all getters const. The
odd one out is incAccessDepth which is called by the memory system as
packets carry the request around. This is also const to enable the
packet to hold on to a const Request.
|
|
|
|
This patch simplifies how we deal with dynamically allocated data in
the packet, always assuming that it is array allocated, and hence
should be array deallocated (delete[] as opposed to delete). The only
uses of dataDynamic was in the Ruby testers.
The ARRAY_DATA flag in the packet is removed accordingly. No
defragmentation of the flags is done at this point, leaving a gap in
the bit masks.
As the last part the patch, it renames dataDynamicArray to dataDynamic.
|
|
This patch cleans up the packet memory allocation confusion. The data
is always allocated at the requesting side, when a packet is created
(or copied), and there is never a need for any device to allocate any
space if it is merely responding to a paket. This behaviour is in line
with how SystemC and TLM works as well, thus increasing
interoperability, and matching established conventions.
The redundant calls to Packet::allocate are removed, and the checks in
the function are tightened up to make sure data is only ever allocated
once. There are still some oddities in the packet copy constructor
where we copy the data pointer if it is static (without ownership),
and allocate new space if the data is dynamic (with ownership). The
latter is being worked on further in a follow-on patch.
|
|
This patch changes the various write functions in the port proxies
to use const pointers for all sources (similar to how memcpy works).
The one unfortunate aspect is the need for a const_cast in the packet,
to avoid having to juggle a const and a non-const data pointer. This
design decision can always be re-evaluated at a later stage.
|
|
This patch takes a first step in tightening up how we use the data
pointer in write packets. A const getter is added for the pointer
itself (getConstPtr), and a number of member functions are also made
const accordingly. In a range of places throughout the memory system
the new member is used.
The patch also removes the unused isReadWrite function.
|
|
This patch removes the parameter that enables bypassing the null check
in the Packet::getPtr method. A number of call sites assume the value
to be non-null.
The one odd case is the RubyTester, which issues zero-sized
prefetches(!), and despite being reads they had no valid data
pointer. This is now fixed, but the size oddity remains (unless anyone
object or has any good suggestions).
Finally, in the Ruby Sequencer, appropriate checks are made for flush
packets as they have no valid data pointer.
|
|
This patch adds a first cut GDDR5 config to accommodate the users
combining gem5 and GPUSim. The config is based on a SK Hynix
datasheet, and the Nvidia GTX580 specification. Someone from the
GPUSim user-camp should tweak the default page-policy and static
frontend and backend latencies.
|
|
Mostly addressing uninitialised members.
|
|
This patch adds uncacheable/cacheable and read-only/read-write attributes to
the map method of PageTableBase. It also modifies the constructor of TlbEntry
structs for all architectures to consider the new attributes.
|
|
The multi level page table was giving false positives for already mapped
translations. This patch fixes the bogus behavior.
|
|
Trimmed down all the lines greater than 78 characters.
|
|
This patch sets up low and high privilege code and data segments and places them
in the following order: cs low, ds low, ds, cs, in the GDT. Additionally, a
syscall and page fault handler for KvmCPU in SE mode are defined. The order of
the segment selectors in GDT is required in this manner for interrupt handling
to work properly. Segment initialization is done for all the thread
contexts.
|
|
This patch adds methods in KvmCPU model to handle KVM exits caused by syscall
instructions and page faults. These types of exits will be encountered if
KvmCPU is run in SE mode.
|
|
Adding more features in the CPUid with the purpose of supporting running the
KvmCPU in SE mode.
|
|
There was already a stub device at 0x80, the port traditionally used for an IO
delay. 0x80 is also the port used for POST codes sent by firmware, and that
may have prompted adding this port as a second option.
|
|
|
|
|
|
The data size used for actually writing the base value for the segment was the
default size, but really it should set the entire value without any possible
truncation.
|
|
The far pointer should be shifted right to get the selector value, not left.
Also, when calculating the width of the offset, the wrong register was used in
one spot.
|
|
Otherwise the IPI which isn't sent will never arrive, and the deliveryStatus
bit will never be cleared.
|
|
The getRegArrayBit function extracts a bit from a series of registers which
are treated as a single large bit array. A previous change had modified the
logic which figured out which bit to extract from ">> 5" to "% 5" which seems
wrong, especially when other, similar functions were changed to use "% 32".
|
|
The value in EAX has an 8 bit field for the linear address size and one for
the physical address size when calling that function. A recent change
implemented it but returned 0xff for both of those fields. That implies that
linear and physical addresses are 255 bits wide which is wrong. When using the
KVM CPU model this causes an error, presumably because some of those bits are
actually reserved, or the CPU or kernel realizes 255 bits is a bad value.
This change makes those values 48.
|
|
Another churn to clean up undefined behaviour, mostly ARM, but some
parts also touching the generic part of the code base.
Most of the fixes are simply ensuring that proper intialisation. One
of the more subtle changes is the return type of the sign-extension,
which is changed to uint64_t. This is to avoid shifting negative
values (undefined behaviour) in the ISA code.
|
|
|
|
With recent changes OSX clang compilation fails due to an unused variable.
|
|
|
|
This patch fixes a number of occurences where the sorting order of the
objects was implementation defined.
|
|
This patch reverts changeset 9277177eccff which does not do what it
was intended to do. In essence, we go back to implementing mkutctime
much like the non-standard timegm extension.
|
|
Mwait works as follows:
1. A cpu monitors an address of interest (monitor instruction)
2. A cpu calls mwait - this loads the cache line into that cpu's cache.
3. The cpu goes to sleep.
4. When another processor requests write permission for the line, it is
evicted from the sleeping cpu's cache. This eviction is forwarded to the
sleeping cpu, which then wakes up.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
Fixes a bug where Minor drains in the midst of committing a
conditional store.
While committing a conditional store, lastCommitWasEndOfMacroop is true
(from the previous instruction) as we still haven't finished the conditional
store. If a drain occurs before the cache response, Minor would check just
lastCommitWasEndOfMacroop, which was true, and set drainState=DrainHaltFetch,
which increases the streamSeqNum. This caused the conditional store to be
squashed when the memory responded and it completed. However, to the memory
the store succeeded, while to the instruction sequence it never occurred.
In the case of an LLSC, the instruction sequence will replay the squashed
STREX, which will fail as the cache is no longer in LLSC. Then the
instruction sequence will loop back to a LDREX, which receives the updated
(incorrect) value.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
Ruby's functional accesses are not guaranteed to succeed as of now. While
this is not a problem for the protocols that are currently in the mainline
repo, it seems that coherence protocols for gpus rely on a backing store to
supply the correct data. The aim of this patch is to make this backing store
configurable i.e. it comes into play only when a particular option:
--access-backing-store is invoked.
The backing store has been there since M5 and GEMS were integrated. The only
difference is that earlier the system used to maintain the backing store and
ruby's copy was write-only. Sometime last year, we moved to data being
supplied supplied by ruby in SE mode simulations. And now we have patches on
the reviewboard, which remove ruby's copy of memory altogether and rely
completely on the system's memory to supply data. This patch adds back a
SimpleMemory member to RubySystem. This member is used only if the option:
access-backing-store is set to true. By default, the memory would not be
accessed.
|
|
This patch is the final in the series. The whole series and this patch in
particular were written with the aim of interfacing ruby's directory controller
with the memory controller in the classic memory system. This is being done
since ruby's memory controller has not being kept up to date with the changes
going on in DRAMs. Classic's memory controller is more up to date and
supports multiple different types of DRAM. This also brings classic and
ruby ever more close. The patch also changes ruby's memory controller to
expose the same interface.
|
|
This function was added when I had incorrectly arrived at the conclusion
that such a function can improve the chances of a functional read succeeding.
As was later realized, this is not possible in the current setup. While the
code using this function was dropped long back, this function was not. Hence
the patch.
|
|
This patch removes the data block present in the directory entry structure
of each protocol in gem5's mainline. Firstly, this is required for moving
towards common set of memory controllers for classic and ruby memory systems.
Secondly, the data block was being misused in several places. It was being
used for having free access to the physical memory instead of calling on the
memory controller.
From now on, the directory controller will not have a direct visibility into
the physical memory. The Memory Vector object now resides in the
Memory Controller class. This also means that some significant changes are
being made to the functional accesses in ruby.
|
|
|
|
In my opinion, it creates needless complications in rest of the code.
Also, this structure hinders the move towards common set of code for
physical memory controllers.
|
|
Both ruby and the system used to maintain memory copies. With the changes
carried for programmed io accesses, only one single memory is required for
fs simulations. This patch sets the copy of memory that used to reside
with the system to null, so that no space is allocated, but address checks
can still be carried out. All the memory accesses now source and sink values
to the memory maintained by ruby.
|
|
As of now DMASequencer inherits from the RubyPort class. But the code in
RubyPort class is heavily tailored for the CPU Sequencer. There are parts of
the code that are not required at all for the DMA sequencer. Moreover, the
next patch uses the dma sequencer for carrying out memory accesses for all the
io devices. Hence, it is better to have a leaner dma sequencer.
|