Age | Commit message (Collapse) | Author |
|
This adds support for FreeBSD/aarch64 FS and SE mode (basic set of syscalls only)
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
Both open_adaptive and close_adaptive page polices keep the page
open if a row hit is found. If a row hit is not found, close_adaptive
page policy precharges the row, and open_adaptive policy precharges
the row only if there is a bank conflict request waiting in the queue.
This patch makes the checks for above conditions simpler.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
UBSan complains about negative value being shifted
|
|
Currently, each op class has a parameter issueLat that denotes the cycles after
which another op of the same class can be issued. As of now, this latency can
either be one cycle (fully pipelined) or same as execution latency of the op
(not at all pipelined). The fact that issueLat is a parameter of type Cycles
makes one believe that it can be set to any value. To avoid the confusion, the
parameter is being renamed as 'pipelined' with type boolean. If set to true,
the op would execute in a fully pipelined fashion. Otherwise, it would execute
in an unpipelined fashion.
|
|
This patch sets the default latency of the division microop to a single cycle
on x86. This is because the division instructions DIV and IDIV have been
implemented as loops of div microops, where each microop computes a single bit
of the quotient.
|
|
Same exception is raised whether division with zero is performed or the
quotient is greater than the maximum value that the provided space can hold.
Divide-by-Zero is the AMD terminology, while Divide-Error is Intel's.
|
|
This patch rolls back the move of the GDB_REG_BYTES constant, and
instead adds M5_VAR_USED.
|
|
This patch introduces a UFS host controller and a UFS device. More
information about the UFS standard can be found at the JEDEC site:
http://www.jedec.org/standards-documents/results/jesd220
Note that the model does not implement the complete standard, and as
such is not an actual implementation of UFS. The following SCSI
commands are implemented: inquiry, read, read capacity, report LUNs,
start/stop, test unit ready, verify, write, format unit, send
diagnostic, synchronize cache, mode select, mode sense, request sense,
unmap, write buffer and read buffer. This is sufficient for usage with
Linux and Android.
To interact with this model a kernel version 3.9 or above is
needed.
|
|
This adds a NAND flash timing model. This model takes the number of
planes into account and is ultimately intended to be used as a
high-level performance model for any device using flash. To access the
memory, use either readMemory or writeMemory.
To make use of the model you will need an interface model
such as UFSHostDevice, which is part of a separate patch.
At the moment the flash device is part of the ARM device tree since
the only use if the UFSHostDevice, and that in turn relies on the ARM
GIC.
|
|
This patch adds an I2C bus and base device. I2C is used to connect a
variety of sensors, and this patch serves as a starting point to
enable a range of I2C devices.
|
|
This patch fixes a few small issues to ensure gem5 compiles when using
gcc 5.1.
First, the GDB_REG_BYTES in the RemoteGDB header are, rather
surprisingly, flagged as unused for both ARM and X86. Removing them,
however, causes compilation errors as they are actually used in the
source file. Moving the constant into the class definition fixes the
issue. Possibly a gcc bug.
Second, we have an unused EthPktData constructor using auto_ptr, and
the latter is deprecated. Since the code is never used it is simply
removed.
|
|
The o3 cpu instruction queue model uses the count variable to track the number
of unissued instructions in the queue. Previously, the squash method used
this variable to avoid executing the doSquash method when there were no
unissued instructions in the pipeline. A corner case problem exists when
only issued instructions exist in the pipeline and a squash occurs; the
doSquash code is not invoked and subsequently does not clean up state properly.
|
|
|
|
Update table with additional definitions through Linux 3.13.
|
|
Don't use std::cerr directly, and just return EINVAL instead of aborting.
|
|
Also nix extra whitespace.
|
|
|
|
This patch takes the final step in removing the InOrderCPU from the
tree. Rest in peace.
The MinorCPU is now used to model an in-order microarchitecture, and
long term the MinorCPU will eventually be renamed InOrderCPU.
|
|
This patch ensures that the CPU progress Event is triggered for the new set of
switched_cpus that get scheduled (e.g. during fast-forwarding). it also avoids
printing the interval state if the cpu is currently switched out.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
|
|
Restoring from a checkpoint with ruby + the DRAMCtrl memory model was not
working, because ruby and DRAMCtrl disagreed on the current tick during warmup.
Since there is no reason to do timing requests during warmup, use functional
requests instead.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
The filenames are initialized with NULL. So the test should be
checking for them to be == NULL instead == None.
|
|
The function was using the host fd to obtain the fd object from the simulated
process.
|
|
This patch adds an example configuration in ext/sst/tests/ that allows
an SST/gem5 instance to simulate a 4-core AArch64 system with SST's
memHierarchy components providing all the caches and memories.
|
|
Restoring from a checkpoint fails if either the RTC or the RTC Timer
Interrrupt event is disabled. The restored machine tried incorrectly
to schedule the next event with negative offset.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
Add 32-bit access width for PrimaryTiming register and 16bit for UDMAControl
register as FreeBSD required.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
The totalInstructions counter is only incremented when the whole instruction is
commited and not on every microop. It was incorrectly reset in atomic and
timing cpus.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>"
|
|
When running with the Exec flag, the mwait instruction attempted
to print out its source registers, which were never actually
initialized. This led to sporadic assertion failures when the
value stored there was invalid.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
|
|
The stride prefetcher had a hardcoded number of contexts (i.e. master-IDs)
that it could handle. Since master IDs need to be unique per system, and
every core, cache etc. requires a separate master port, a static limit on
these does not make much sense.
Instead, this patch adds a small hash map that will map all master IDs to
the right prefetch state and dynamically allocates new state for new master
IDs.
|
|
This patch changes the order of writeback allocation such that any
writebacks resulting from a tag lookup (e.g. for an uncacheable
access), are added to the writebuffer before any new MSHR entries are
allocated. This ensures that the writebacks logically precedes the new
allocations.
The patch also changes the uncacheable flush to use proper timed (or
atomic) writebacks, as opposed to functional writes.
|
|
This patch simplifies the code dealing with uncacheable timing
accesses, aiming to align it with the existing miss handling. Similar
to what we do in atomic, a timing request now goes through
Cache::access (where the block is also flushed), and then proceeds to
ignore any existing MSHR for the block in question. This unifies the
flow for cacheable and uncacheable accesses, and for atomic and timing.
|
|
This patch changes how we search for matching MSHRs, ignoring any MSHR
that is allocated for an uncacheable access. By doing so, this patch
fixes a corner case in the MSHRs where incorrect data ended up being
copied into a (cacheable) read packet due to a first uncacheable MSHR
target of size 4, followed by a cacheable target to the same MSHR of
size 64. The latter target was filled with nonsense data.
|
|
This patch removes the no-longer-needed
allocateUncachedReadBuffer. Besides the checks it is exactly the same
as allocateMissBuffer and thus provides no value.
|
|
This patch updates the iterators in the MSHR and MSHR queues to use
C++11 range-based for loops. It also does a bit of additional house
keeping.
|
|
This patch aligns all MSHR queue entries to block boundaries to
simplify checks for matches. Previously there were corner cases that
could lead to existing entries not being identified as matches.
There are, rather alarmingly, a few regressions that change with this
patch.
|
|
This patch subsumes the PREFETCH_SNOOP_SQUASH flag with the more
generic BLOCK_CACHED flag. Future patches implementing cache eviction
messages can use the BLOCK_CACHED flag in almost the same manner as
hardware prefetches use the PREFETCH_SNOOP_SQUASH flag. The
PREFTECH_SNOOP_FLAG is set if the prefetch target is found in the tags
or the MSHRs in any state, so we are simply replacing calls to
setPrefetchSquashed() with setBlockCached(). The case of where the
prefetch target is found in the writeback MSHRs of upper level caches
continues to be covered by the MEM_INHIBIT flag.
|
|
Matching final version on reviewboard.
|
|
This patch fixes an issue that prevented gem5 to be built with C++
config and without Python.
|
|
Makes x86-style locked operations even more distinct from
LLSC operations. Using "locked" by itself should be
obviously ambiguous now.
|
|
Currently if there are shell special characters in a
command-line argument, you can't copy and paste the
echoed command line onto a shell prompt because the
characters aren't quoted properly. This patch fixes
that problem.
|
|
This patch accomplishes two things:
1. Makes simulate()'s GlobalSimLoopExitEvent a singleton reused
across calls. This is slightly more efficient than recreating
it every time.
2. Gives callers to simulate() (especially other simulators) a
foolproof way of knowing that the simulation period ended
successfully by hitting the limit event. They can call
getLimitEvent() and compare it to the return
value of simulate().
This change was motivated by an ongoing effort to integrate gem5
and SST, with SST as the master sim and gem5 as the slave sim.
|
|
This patch does a bit of house keeping, fixing up typos, removing dead
code etc.
|
|
This patch adds a new PIO-accessible GICv2m shim. This shim has a PIO
slave port on one side, and SPI 'wires' on the other. It accepts MSIs
from the system and triggers SPIs on the GIC. It is configurable with
a number of frames, each of which has a number of SPIs and a base SPI
offset.
A Linux driver for GICv2m is available upstream.
|
|
This patch removes the code that added this magic register. A
follow-up patch provides a GICv2m MSI shim that gives the same
functionality in a standard ARM system architecture way.
|
|
Fix erroneous message format for fatal error.
Previously, code did not have type indicator (% instead of %d).
Also removed redundant fatal check.
Ran modified sweep.py with in range and out of range values to test.
|
|
Embrace C++11 for the deferred packets as we actually store the
objects in the data structure, and not just pointers.
|
|
The CommMonitor by default only allows memory traces to be gathered in
timing mode. This patch allows memory traces to be gathered in atomic
mode if all one needs is a functional trace of memory addresses used
and timing information is of a secondary concern.
|
|
For some reason we were checking mshr->hasTargets() even though
we had already called mshr->getTarget() unconditionally earlier
in the same function (which asserts if there are no targets).
Get rid of this useless check, and while we're at it get rid
of the redundant call to mshr->getTarget(), since we still have
the value saved in a local var.
|