Age | Commit message (Collapse) | Author |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
This parameter depends on a number of coincidences to work properly. First,
there must be an array assigned to system called "cpu" even though there's no
parameter called that. Second, the items in the "cpu" array have to have a
"clock" parameter which has a "frequency" member. This is true of the normal
CPUs, but isn't true of the memory tester CPUs. This happened to work before
because the memory tester CPUs were only used in SE mode where this parameter
was being excluded. Since everything is being pulled into a common binary,
this won't work any more. Since the boot_cpu_frequency parameter is only used
by Alpha's Linux System object (and Mips's through copy and paste), the
definition of that parameter is moved down to those objects specifically.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
This is so they don't have to declare themselves to the IO APIC and don't have
to have a pointer to the platform object.
|
|
|
|
|
|
Not all objects need a platform pointer, and having one creates a dependence
on their being a platform object. This change removes the platform pointer to
from the base device object and moves it into subclasses that actually need
it.
|
|
In order for a system object to work in SE mode and FS mode, it has to either
always require a platform object even in SE mode, or get rid of the
requirement all together. Making SE mode carry around unnecessary/unused bits
of FS seems less than ideal, so I decided to go with the second option. The
platform pointer in the System class was used for exactly one purpose, a path
for the Alpha Linux system object to get to the real time clock and read its
frequency so that it could short cut the loops_per_jiffy calculation. There
was also a copy and pasted implementation in MIPS, but since it was only there
because it was there in Alpha I still count that as one use.
This change reverses the mechanism that communicates the RTC frequency so that
the Tsunami platform object pushes it up to the AlphaSystem object. This is
slightly less specific than it could be because really only the
AlphaLinuxSystem uses it. Because the intrFrequency function on the Platform
class was no longer necessary (and unimplemented on anything but Alpha) it was
eliminated.
After this change, a platform will need to have a system, but a system won't
have to have a platform.
|
|
|
|
|
|
|
|
|
|
|
|
These faults take varargs to their constructors which they print into a string
and pass to the M5DebugFault base class. They are basically faults wrapped
around panics, faults, warns, and warnonce-es so that they happen only at
commit.
|
|
All of the classes will now be available in both modes, and only
GenericPageTableFault will continue to check the mode for conditional
compilation. It uses a process object to handle the fault in SE mode, and
for now those aren't available in FS mode.
|
|
By using an underscore, the "." is still available and can unambiguously be
used to refer to members of a structure if an operand is a structure, class,
etc. This change mostly just replaces the appropriate "."s with "_"s, but
there were also a few places where the ISA descriptions where handling the
extensions themselves and had their own regular expressions to update. The
regular expressions in the isa parser were updated as well. It also now
looks for one of the defined type extensions specifically after connecting "_"
where before it would look for any sequence of characters after a "."
following an operand name and try to use it as the extension. This helps to
disambiguate cases where a "_" may legitimately be part of an operand name but
not separate the name from the type suffix.
Because leaving the "_" and suffix on the variable name still leaves a valid
C++ identifier and all extensions need to be consistent in a given context, I
considered leaving them on as a breadcrumb that would show what the intended
type was for that operand. Unfortunately the operands can be referred to in
code templates, the Mem operand in particular, and since the exact type of Mem
can be different for different uses of the same template, that broke things.
|