summaryrefslogtreecommitdiff
path: root/arch/alpha/alpha_memory.cc
blob: d00186d9512007145430ddd90fd042693b1349ae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
/*
 * Copyright (c) 2001-2005 The Regents of The University of Michigan
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <sstream>
#include <string>
#include <vector>

#include "arch/alpha/alpha_memory.hh"
#include "base/inifile.hh"
#include "base/str.hh"
#include "base/trace.hh"
#include "config/alpha_tlaser.hh"
#include "cpu/exec_context.hh"
#include "sim/builder.hh"

using namespace std;
using namespace EV5;

///////////////////////////////////////////////////////////////////////
//
//  Alpha TLB
//
#ifdef DEBUG
bool uncacheBit39 = false;
bool uncacheBit40 = false;
#endif

#define MODE2MASK(X)			(1 << (X))

AlphaTLB::AlphaTLB(const string &name, int s)
    : SimObject(name), size(s), nlu(0)
{
    table = new AlphaISA::PTE[size];
    memset(table, 0, sizeof(AlphaISA::PTE[size]));
}

AlphaTLB::~AlphaTLB()
{
    if (table)
        delete [] table;
}

// look up an entry in the TLB
AlphaISA::PTE *
AlphaTLB::lookup(Addr vpn, uint8_t asn) const
{
    // assume not found...
    AlphaISA::PTE *retval = NULL;

    PageTable::const_iterator i = lookupTable.find(vpn);
    if (i != lookupTable.end()) {
        while (i->first == vpn) {
            int index = i->second;
            AlphaISA::PTE *pte = &table[index];
            assert(pte->valid);
            if (vpn == pte->tag && (pte->asma || pte->asn == asn)) {
                retval = pte;
                break;
            }

            ++i;
        }
    }

    DPRINTF(TLB, "lookup %#x, asn %#x -> %s ppn %#x\n", vpn, (int)asn,
            retval ? "hit" : "miss", retval ? retval->ppn : 0);
    return retval;
}


void
AlphaTLB::checkCacheability(MemReqPtr &req)
{
    // in Alpha, cacheability is controlled by upper-level bits of the
    // physical address

    /*
     * We support having the uncacheable bit in either bit 39 or bit 40.
     * The Turbolaser platform (and EV5) support having the bit in 39, but
     * Tsunami (which Linux assumes uses an EV6) generates accesses with
     * the bit in 40.  So we must check for both, but we have debug flags
     * to catch a weird case where both are used, which shouldn't happen.
     */


#if ALPHA_TLASER
    if (req->paddr & PAddrUncachedBit39) {
#else
    if (req->paddr & PAddrUncachedBit43) {
#endif
        // IPR memory space not implemented
        if (PAddrIprSpace(req->paddr)) {
            if (!req->xc->misspeculating()) {
                switch (req->paddr) {
                  case ULL(0xFFFFF00188):
                    req->data = 0;
                    break;

                  default:
                    panic("IPR memory space not implemented! PA=%x\n",
                          req->paddr);
                }
            }
        } else {
            // mark request as uncacheable
            req->flags |= UNCACHEABLE;

#if !ALPHA_TLASER
            // Clear bits 42:35 of the physical address (10-2 in Tsunami manual)
            req->paddr &= PAddrUncachedMask;
#endif
        }
    }
}


// insert a new TLB entry
void
AlphaTLB::insert(Addr addr, AlphaISA::PTE &pte)
{
    AlphaISA::VAddr vaddr = addr;
    if (table[nlu].valid) {
        Addr oldvpn = table[nlu].tag;
        PageTable::iterator i = lookupTable.find(oldvpn);

        if (i == lookupTable.end())
            panic("TLB entry not found in lookupTable");

        int index;
        while ((index = i->second) != nlu) {
            if (table[index].tag != oldvpn)
                panic("TLB entry not found in lookupTable");

            ++i;
        }

        DPRINTF(TLB, "remove @%d: %#x -> %#x\n", nlu, oldvpn, table[nlu].ppn);

        lookupTable.erase(i);
    }

    DPRINTF(TLB, "insert @%d: %#x -> %#x\n", nlu, vaddr.vpn(), pte.ppn);

    table[nlu] = pte;
    table[nlu].tag = vaddr.vpn();
    table[nlu].valid = true;

    lookupTable.insert(make_pair(vaddr.vpn(), nlu));
    nextnlu();
}

void
AlphaTLB::flushAll()
{
    DPRINTF(TLB, "flushAll\n");
    memset(table, 0, sizeof(AlphaISA::PTE[size]));
    lookupTable.clear();
    nlu = 0;
}

void
AlphaTLB::flushProcesses()
{
    PageTable::iterator i = lookupTable.begin();
    PageTable::iterator end = lookupTable.end();
    while (i != end) {
        int index = i->second;
        AlphaISA::PTE *pte = &table[index];
        assert(pte->valid);

        // we can't increment i after we erase it, so save a copy and
        // increment it to get the next entry now
        PageTable::iterator cur = i;
        ++i;

        if (!pte->asma) {
            DPRINTF(TLB, "flush @%d: %#x -> %#x\n", index, pte->tag, pte->ppn);
            pte->valid = false;
            lookupTable.erase(cur);
        }
    }
}

void
AlphaTLB::flushAddr(Addr addr, uint8_t asn)
{
    AlphaISA::VAddr vaddr = addr;

    PageTable::iterator i = lookupTable.find(vaddr.vpn());
    if (i == lookupTable.end())
        return;

    while (i->first == vaddr.vpn()) {
        int index = i->second;
        AlphaISA::PTE *pte = &table[index];
        assert(pte->valid);

        if (vaddr.vpn() == pte->tag && (pte->asma || pte->asn == asn)) {
            DPRINTF(TLB, "flushaddr @%d: %#x -> %#x\n", index, vaddr.vpn(),
                    pte->ppn);

            // invalidate this entry
            pte->valid = false;

            lookupTable.erase(i);
        }

        ++i;
    }
}


void
AlphaTLB::serialize(ostream &os)
{
    SERIALIZE_SCALAR(size);
    SERIALIZE_SCALAR(nlu);

    for (int i = 0; i < size; i++) {
        nameOut(os, csprintf("%s.PTE%d", name(), i));
        table[i].serialize(os);
    }
}

void
AlphaTLB::unserialize(Checkpoint *cp, const string &section)
{
    UNSERIALIZE_SCALAR(size);
    UNSERIALIZE_SCALAR(nlu);

    for (int i = 0; i < size; i++) {
        table[i].unserialize(cp, csprintf("%s.PTE%d", section, i));
        if (table[i].valid) {
            lookupTable.insert(make_pair(table[i].tag, i));
        }
    }
}


///////////////////////////////////////////////////////////////////////
//
//  Alpha ITB
//
AlphaITB::AlphaITB(const std::string &name, int size)
    : AlphaTLB(name, size)
{}


void
AlphaITB::regStats()
{
    hits
        .name(name() + ".hits")
        .desc("ITB hits");
    misses
        .name(name() + ".misses")
        .desc("ITB misses");
    acv
        .name(name() + ".acv")
        .desc("ITB acv");
    accesses
        .name(name() + ".accesses")
        .desc("ITB accesses");

    accesses = hits + misses;
}

void
AlphaITB::fault(Addr pc, ExecContext *xc) const
{
    uint64_t *ipr = xc->regs.ipr;

    if (!xc->misspeculating()) {
        ipr[AlphaISA::IPR_ITB_TAG] = pc;
        ipr[AlphaISA::IPR_IFAULT_VA_FORM] =
            ipr[AlphaISA::IPR_IVPTBR] | (AlphaISA::VAddr(pc).vpn() << 3);
    }
}


Fault
AlphaITB::translate(MemReqPtr &req) const
{
    InternalProcReg *ipr = req->xc->regs.ipr;

    if (AlphaISA::PcPAL(req->vaddr)) {
        // strip off PAL PC marker (lsb is 1)
        req->paddr = (req->vaddr & ~3) & PAddrImplMask;
        hits++;
        return NoFault;
    }

    if (req->flags & PHYSICAL) {
        req->paddr = req->vaddr;
    } else {
        // verify that this is a good virtual address
        if (!validVirtualAddress(req->vaddr)) {
            fault(req->vaddr, req->xc);
            acv++;
            return ItbAcvFault;
        }


        // VA<42:41> == 2, VA<39:13> maps directly to PA<39:13> for EV5
        // VA<47:41> == 0x7e, VA<40:13> maps directly to PA<40:13> for EV6
#if ALPHA_TLASER
        if ((MCSR_SP(ipr[AlphaISA::IPR_MCSR]) & 2) &&
            VAddrSpaceEV5(req->vaddr) == 2) {
#else
        if (VAddrSpaceEV6(req->vaddr) == 0x7e) {
#endif
            // only valid in kernel mode
            if (ICM_CM(ipr[AlphaISA::IPR_ICM]) !=
                AlphaISA::mode_kernel) {
                fault(req->vaddr, req->xc);
                acv++;
                return ItbAcvFault;
            }

            req->paddr = req->vaddr & PAddrImplMask;

#if !ALPHA_TLASER
            // sign extend the physical address properly
            if (req->paddr & PAddrUncachedBit40)
                req->paddr |= ULL(0xf0000000000);
            else
                req->paddr &= ULL(0xffffffffff);
#endif

        } else {
            // not a physical address: need to look up pte
            AlphaISA::PTE *pte = lookup(AlphaISA::VAddr(req->vaddr).vpn(),
                                        DTB_ASN_ASN(ipr[AlphaISA::IPR_DTB_ASN]));

            if (!pte) {
                fault(req->vaddr, req->xc);
                misses++;
                return ItbPageFault;
            }

            req->paddr = (pte->ppn << AlphaISA::PageShift) +
                (AlphaISA::VAddr(req->vaddr).offset() & ~3);

            // check permissions for this access
            if (!(pte->xre & (1 << ICM_CM(ipr[AlphaISA::IPR_ICM])))) {
                // instruction access fault
                fault(req->vaddr, req->xc);
                acv++;
                return ItbAcvFault;
            }

            hits++;
        }
    }

    // check that the physical address is ok (catch bad physical addresses)
    if (req->paddr & ~PAddrImplMask)
        return MachineCheckFault;

    checkCacheability(req);

    return NoFault;
}

///////////////////////////////////////////////////////////////////////
//
//  Alpha DTB
//
AlphaDTB::AlphaDTB(const std::string &name, int size)
    : AlphaTLB(name, size)
{}

void
AlphaDTB::regStats()
{
    read_hits
        .name(name() + ".read_hits")
        .desc("DTB read hits")
        ;

    read_misses
        .name(name() + ".read_misses")
        .desc("DTB read misses")
        ;

    read_acv
        .name(name() + ".read_acv")
        .desc("DTB read access violations")
        ;

    read_accesses
        .name(name() + ".read_accesses")
        .desc("DTB read accesses")
        ;

    write_hits
        .name(name() + ".write_hits")
        .desc("DTB write hits")
        ;

    write_misses
        .name(name() + ".write_misses")
        .desc("DTB write misses")
        ;

    write_acv
        .name(name() + ".write_acv")
        .desc("DTB write access violations")
        ;

    write_accesses
        .name(name() + ".write_accesses")
        .desc("DTB write accesses")
        ;

    hits
        .name(name() + ".hits")
        .desc("DTB hits")
        ;

    misses
        .name(name() + ".misses")
        .desc("DTB misses")
        ;

    acv
        .name(name() + ".acv")
        .desc("DTB access violations")
        ;

    accesses
        .name(name() + ".accesses")
        .desc("DTB accesses")
        ;

    hits = read_hits + write_hits;
    misses = read_misses + write_misses;
    acv = read_acv + write_acv;
    accesses = read_accesses + write_accesses;
}

void
AlphaDTB::fault(MemReqPtr &req, uint64_t flags) const
{
    ExecContext *xc = req->xc;
    AlphaISA::VAddr vaddr = req->vaddr;
    uint64_t *ipr = xc->regs.ipr;

    // Set fault address and flags.  Even though we're modeling an
    // EV5, we use the EV6 technique of not latching fault registers
    // on VPTE loads (instead of locking the registers until IPR_VA is
    // read, like the EV5).  The EV6 approach is cleaner and seems to
    // work with EV5 PAL code, but not the other way around.
    if (!xc->misspeculating()
        && !(req->flags & VPTE) && !(req->flags & NO_FAULT)) {
        // set VA register with faulting address
        ipr[AlphaISA::IPR_VA] = req->vaddr;

        // set MM_STAT register flags
        ipr[AlphaISA::IPR_MM_STAT] =
            (((Opcode(xc->getInst()) & 0x3f) << 11)
             | ((Ra(xc->getInst()) & 0x1f) << 6)
             | (flags & 0x3f));

        // set VA_FORM register with faulting formatted address
        ipr[AlphaISA::IPR_VA_FORM] =
            ipr[AlphaISA::IPR_MVPTBR] | (vaddr.vpn() << 3);
    }
}

Fault
AlphaDTB::translate(MemReqPtr &req, bool write) const
{
    RegFile *regs = &req->xc->regs;
    Addr pc = regs->pc;
    InternalProcReg *ipr = regs->ipr;

    AlphaISA::mode_type mode =
        (AlphaISA::mode_type)DTB_CM_CM(ipr[AlphaISA::IPR_DTB_CM]);


    /**
     * Check for alignment faults
     */
    if (req->vaddr & (req->size - 1)) {
        fault(req, write ? MM_STAT_WR_MASK : 0);
        DPRINTF(TLB, "Alignment Fault on %#x, size = %d", req->vaddr,
                req->size);
        return AlignmentFault;
    }

    if (pc & 0x1) {
        mode = (req->flags & ALTMODE) ?
            (AlphaISA::mode_type)ALT_MODE_AM(ipr[AlphaISA::IPR_ALT_MODE])
            : AlphaISA::mode_kernel;
    }

    if (req->flags & PHYSICAL) {
        req->paddr = req->vaddr;
    } else {
        // verify that this is a good virtual address
        if (!validVirtualAddress(req->vaddr)) {
            fault(req, (write ? MM_STAT_WR_MASK : 0) |
                  MM_STAT_BAD_VA_MASK |
                  MM_STAT_ACV_MASK);

            if (write) { write_acv++; } else { read_acv++; }
            return DtbPageFault;
        }

        // Check for "superpage" mapping
#if ALPHA_TLASER
        if ((MCSR_SP(ipr[AlphaISA::IPR_MCSR]) & 2) &&
            VAddrSpaceEV5(req->vaddr) == 2) {
#else
        if (VAddrSpaceEV6(req->vaddr) == 0x7e) {
#endif

            // only valid in kernel mode
            if (DTB_CM_CM(ipr[AlphaISA::IPR_DTB_CM]) !=
                AlphaISA::mode_kernel) {
                fault(req, ((write ? MM_STAT_WR_MASK : 0) |
                            MM_STAT_ACV_MASK));
                if (write) { write_acv++; } else { read_acv++; }
                return DtbAcvFault;
            }

            req->paddr = req->vaddr & PAddrImplMask;

#if !ALPHA_TLASER
            // sign extend the physical address properly
            if (req->paddr & PAddrUncachedBit40)
                req->paddr |= ULL(0xf0000000000);
            else
                req->paddr &= ULL(0xffffffffff);
#endif

        } else {
            if (write)
                write_accesses++;
            else
                read_accesses++;

            // not a physical address: need to look up pte
            AlphaISA::PTE *pte = lookup(AlphaISA::VAddr(req->vaddr).vpn(),
                                        DTB_ASN_ASN(ipr[AlphaISA::IPR_DTB_ASN]));

            if (!pte) {
                // page fault
                fault(req, (write ? MM_STAT_WR_MASK : 0) |
                      MM_STAT_DTB_MISS_MASK);
                if (write) { write_misses++; } else { read_misses++; }
                return (req->flags & VPTE) ? (Fault)PDtbMissFault : (Fault)NDtbMissFault;
            }

            req->paddr = (pte->ppn << AlphaISA::PageShift) +
                AlphaISA::VAddr(req->vaddr).offset();

            if (write) {
                if (!(pte->xwe & MODE2MASK(mode))) {
                    // declare the instruction access fault
                    fault(req, MM_STAT_WR_MASK |
                          MM_STAT_ACV_MASK |
                          (pte->fonw ? MM_STAT_FONW_MASK : 0));
                    write_acv++;
                    return DtbPageFault;
                }
                if (pte->fonw) {
                    fault(req, MM_STAT_WR_MASK |
                          MM_STAT_FONW_MASK);
                    write_acv++;
                    return DtbPageFault;
                }
            } else {
                if (!(pte->xre & MODE2MASK(mode))) {
                    fault(req, MM_STAT_ACV_MASK |
                          (pte->fonr ? MM_STAT_FONR_MASK : 0));
                    read_acv++;
                    return DtbAcvFault;
                }
                if (pte->fonr) {
                    fault(req, MM_STAT_FONR_MASK);
                    read_acv++;
                    return DtbPageFault;
                }
            }
        }

        if (write)
            write_hits++;
        else
            read_hits++;
    }

    // check that the physical address is ok (catch bad physical addresses)
    if (req->paddr & ~PAddrImplMask)
        return MachineCheckFault;

    checkCacheability(req);

    return NoFault;
}

AlphaISA::PTE &
AlphaTLB::index(bool advance)
{
    AlphaISA::PTE *pte = &table[nlu];

    if (advance)
        nextnlu();

    return *pte;
}

DEFINE_SIM_OBJECT_CLASS_NAME("AlphaTLB", AlphaTLB)

BEGIN_DECLARE_SIM_OBJECT_PARAMS(AlphaITB)

    Param<int> size;

END_DECLARE_SIM_OBJECT_PARAMS(AlphaITB)

BEGIN_INIT_SIM_OBJECT_PARAMS(AlphaITB)

    INIT_PARAM_DFLT(size, "TLB size", 48)

END_INIT_SIM_OBJECT_PARAMS(AlphaITB)


CREATE_SIM_OBJECT(AlphaITB)
{
    return new AlphaITB(getInstanceName(), size);
}

REGISTER_SIM_OBJECT("AlphaITB", AlphaITB)

BEGIN_DECLARE_SIM_OBJECT_PARAMS(AlphaDTB)

    Param<int> size;

END_DECLARE_SIM_OBJECT_PARAMS(AlphaDTB)

BEGIN_INIT_SIM_OBJECT_PARAMS(AlphaDTB)

    INIT_PARAM_DFLT(size, "TLB size", 64)

END_INIT_SIM_OBJECT_PARAMS(AlphaDTB)


CREATE_SIM_OBJECT(AlphaDTB)
{
    return new AlphaDTB(getInstanceName(), size);
}

REGISTER_SIM_OBJECT("AlphaDTB", AlphaDTB)