summaryrefslogtreecommitdiff
path: root/base/statistics.hh
blob: cbc976053ae830ad249066c7eed83437e6db83ca (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
/*
 * Copyright (c) 2003 The Regents of The University of Michigan
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/** @file
 * Declaration of Statistics objects.
 */

/**
* @todo
*
* Generalized N-dimensinal vector
* documentation
* key stats
* interval stats
*   -- these both can use the same function that prints out a
*   specific set of stats
* VectorStandardDeviation totals
* Document Namespaces
*/
#ifndef __STATISTICS_HH__
#define __STATISTICS_HH__

#include <algorithm>
#include <cassert>
#include <cmath>
#include <functional>
#include <iosfwd>
#include <sstream>
#include <string>
#include <vector>

#include "base/cprintf.hh"
#include "base/intmath.hh"
#include "base/refcnt.hh"
#include "base/str.hh"
#include "sim/host.hh"

//
//  Un-comment this to enable weirdo-stat debugging
//
// #define STAT_DEBUG


#ifndef NAN
float __nan();
/** Define Not a number. */
#define NAN (__nan())
/** Need to define __nan() */
#define __M5_NAN
#endif

class Callback;
class Python;

/** The current simulated cycle. */
extern Tick curTick;

/* A namespace for all of the Statistics */
namespace Statistics {
/** All results are doubles. */
typedef double result_t;
/** A vector to hold results. */
typedef std::vector<result_t> rvec_t;

/**
 * Define the storage for format flags.
 * @todo Can probably shrink this.
 */
typedef u_int32_t StatFlags;

/** Nothing extra to print. */
const StatFlags none =		0x00000000;
/** This Stat is Initialized */
const StatFlags init =		0x00000001;
/** Print this stat. */
const StatFlags print =		0x00000002;
/** Print the total. */
const StatFlags total =		0x00000010;
/** Print the percent of the total that this entry represents. */
const StatFlags pdf =		0x00000020;
/** Print the cumulative percentage of total upto this entry. */
const StatFlags cdf =		0x00000040;
/** Print the distribution. */
const StatFlags dist = 		0x00000080;
/** Don't print if this is zero. */
const StatFlags nozero =	0x00000100;
/** Don't print if this is NAN */
const StatFlags nonan =		0x00000200;
/** Used for SS compatability. */
const StatFlags __substat = 	0x80000000;

/** Mask of flags that can't be set directly */
const StatFlags __reserved =	init | print | __substat;

enum DisplayMode
{
    mode_m5,
    mode_simplescalar
};

extern DisplayMode DefaultMode;

/* Contains the statistic implementation details */
//////////////////////////////////////////////////////////////////////
//
// Statistics Framework Base classes
//
//////////////////////////////////////////////////////////////////////
struct StatData
{
    /** The name of the stat. */
    std::string name;
    /** The description of the stat. */
    std::string desc;
    /** The formatting flags. */
    StatFlags flags;
    /** The display precision. */
    int precision;


    /** A pointer to a prerequisite Stat. */
    const StatData *prereq;

    StatData()
        : flags(none), precision(-1), prereq(0)
    {}

    virtual ~StatData();

    /**
     * @return true if the stat is binned.
     */
    virtual bool binned() const = 0;

    /**
     * Print this stat to the given ostream.
     * @param stream The stream to print to.
     */
    virtual void display(std::ostream &stream, DisplayMode mode) const = 0;
    virtual void python(Python &py) const = 0;
    bool dodisplay() const { return !prereq || !prereq->zero(); }

    /**
     * Reset the corresponding stat to the default state.
     */
    virtual void reset() = 0;

    /**
     * @return true if this stat has a value and satisfies its
     * requirement as a prereq
     */
    virtual bool zero() const = 0;

    /**
     * Check that this stat has been set up properly and is ready for
     * use
     * @return true for success
     */
    virtual bool check() const = 0;
    bool baseCheck() const;

    /**
     * Checks if the first stat's name is alphabetically less than the second.
     * This function breaks names up at periods and considers each subname
     * separately.
     * @param stat1 The first stat.
     * @param stat2 The second stat.
     * @return stat1's name is alphabetically before stat2's
     */
    static bool less(StatData *stat1, StatData *stat2);
};

struct ScalarDataBase : public StatData
{
    virtual result_t val() const = 0;
    virtual result_t total() const = 0;

    virtual void display(std::ostream &stream, DisplayMode mode) const;
    virtual void python(Python &py) const;
};

template <class T>
class ScalarData : public ScalarDataBase
{
  protected:
    T &s;

  public:
    ScalarData(T &stat) : s(stat) {}

    virtual bool binned() const { return s.binned(); }
    virtual bool check() const { return s.check(); }
    virtual result_t val() const { return s.val(); }
    virtual result_t total() const { return s.total(); }
    virtual void reset() { s.reset(); }
    virtual bool zero() const { return s.zero(); }
};

struct VectorDataBase : public StatData
{
    /** Names and descriptions of subfields. */
    mutable std::vector<std::string> subnames;
    mutable std::vector<std::string> subdescs;

    virtual void display(std::ostream &stream, DisplayMode mode) const;
    virtual void python(Python &py) const;

    virtual size_t size() const  = 0;
    virtual const rvec_t &val() const  = 0;
    virtual result_t total() const  = 0;
    virtual void update()
    {
        if (!subnames.empty()) {
            int s = size();
            if (subnames.size() < s)
                subnames.resize(s);

            if (subdescs.size() < s)
                subdescs.resize(s);
        }
    }
};

template <class T>
class VectorData : public VectorDataBase
{
  protected:
    T &s;
    mutable rvec_t vec;

  public:
    VectorData(T &stat) : s(stat) {}

    virtual bool binned() const { return s.binned(); }
    virtual bool check() const { return s.check(); }
    virtual bool zero() const { return s.zero(); }
    virtual void reset() { s.reset(); }

    virtual size_t size() const { return s.size(); }
    virtual const rvec_t &val() const
    {
        s.val(vec);
        return vec;
    }
    virtual result_t total() const { return s.total(); }
    virtual void update()
    {
        VectorDataBase::update();
        s.update(this);
    }
};

struct DistDataData
{
    result_t min_val;
    result_t max_val;
    result_t underflow;
    result_t overflow;
    rvec_t vec;
    result_t sum;
    result_t squares;
    result_t samples;

    int min;
    int max;
    int bucket_size;
    int size;
    bool fancy;

    void python(Python &py, const std::string &name) const;
};

struct DistDataBase : public StatData
{
    /** Local storage for the entry values, used for printing. */
    DistDataData data;

    virtual void display(std::ostream &stream, DisplayMode mode) const;
    virtual void python(Python &py) const;
    virtual void update() = 0;
};

template <class T>
class DistData : public DistDataBase
{
  protected:
    T &s;

  public:
    DistData(T &stat) : s(stat) {}

    virtual bool binned() const { return s.binned(); }
    virtual bool check() const { return s.check(); }
    virtual void reset() { s.reset(); }
    virtual bool zero() const { return s.zero(); }
    virtual void update() { return s.update(this); }
};

struct VectorDistDataBase : public StatData
{
    std::vector<DistDataData> data;

   /** Names and descriptions of subfields. */
    mutable std::vector<std::string> subnames;
    mutable std::vector<std::string> subdescs;

    /** Local storage for the entry values, used for printing. */
    mutable rvec_t vec;

    virtual size_t size() const = 0;
    virtual void display(std::ostream &stream, DisplayMode mode) const;
    virtual void python(Python &py) const;
    virtual void update()
    {
        int s = size();
        if (subnames.size() < s)
            subnames.resize(s);

        if (subdescs.size() < s)
            subdescs.resize(s);
    }
};

template <class T>
class VectorDistData : public VectorDistDataBase
{
  protected:
    T &s;
    typedef typename T::bin_t bin_t;

  public:
    VectorDistData(T &stat) : s(stat) {}

    virtual bool binned() const { return bin_t::binned; }
    virtual bool check() const { return s.check(); }
    virtual void reset() { s.reset(); }
    virtual size_t size() const { return s.size(); }
    virtual bool zero() const { return s.zero(); }
    virtual void update()
    {
        VectorDistDataBase::update();
        return s.update(this);
    }
};

struct Vector2dDataBase : public StatData
{
    /** Names and descriptions of subfields. */
    std::vector<std::string> subnames;
    std::vector<std::string> subdescs;
    std::vector<std::string> y_subnames;

    /** Local storage for the entry values, used for printing. */
    mutable rvec_t vec;
    mutable int x;
    mutable int y;

    virtual void display(std::ostream &stream, DisplayMode mode) const;
    virtual void python(Python &py) const;
    virtual void update()
    {
        if (subnames.size() < x)
            subnames.resize(x);
    }
};

template <class T>
class Vector2dData : public Vector2dDataBase
{
  protected:
    T &s;
    typedef typename T::bin_t bin_t;

  public:
    Vector2dData(T &stat) : s(stat) {}

    virtual bool binned() const { return bin_t::binned; }
    virtual bool check() const { return s.check(); }
    virtual void reset() { s.reset(); }
    virtual bool zero() const { return s.zero(); }
    virtual void update()
    {
        Vector2dDataBase::update();
        s.update(this);
    }
};


class DataAccess
{
  protected:
    StatData *find() const;
    void map(StatData *data);

    StatData *statData();
    const StatData *statData() const;

    void setInit();
    void setPrint();
};

template <class Parent, class Child, template <class> class Data>
class Wrap : public Child
{
  protected:
    Parent &self() { return *reinterpret_cast<Parent *>(this); }

  protected:
    Data<Child> *statData()
    {
        StatData *__data = DataAccess::statData();
        Data<Child> *ptr = dynamic_cast<Data<Child> *>(__data);
        assert(ptr);
        return ptr;
    }

  public:
    const Data<Child> *statData() const
    {
        const StatData *__data = DataAccess::statData();
        const Data<Child> *ptr = dynamic_cast<const Data<Child> *>(__data);
        assert(ptr);
        return ptr;
    }

  public:
    Wrap()
    {
        map(new Data<Child>(*this));
    }

    /**
     * Set the name and marks this stat to print at the end of simulation.
     * @param name The new name.
     * @return A reference to this stat.
     */
    Parent &name(const std::string &_name)
    {
        Data<Child> *data = statData();
        data->name = _name;
        setPrint();
        return self();
    }

    /**
     * Set the description and marks this stat to print at the end of
     * simulation.
     * @param desc The new description.
     * @return A reference to this stat.
     */
    Parent &desc(const std::string &_desc)
    {
        statData()->desc = _desc;
        return self();
    }

    /**
     * Set the precision and marks this stat to print at the end of simulation.
     * @param p The new precision
     * @return A reference to this stat.
     */
    Parent &precision(int _precision)
    {
        statData()->precision = _precision;
        return self();
    }

    /**
     * Set the flags and marks this stat to print at the end of simulation.
     * @param f The new flags.
     * @return A reference to this stat.
     */
    Parent &flags(StatFlags _flags)
    {
        statData()->flags |= _flags;
        return self();
    }

    /**
     * Set the prerequisite stat and marks this stat to print at the end of
     * simulation.
     * @param prereq The prerequisite stat.
     * @return A reference to this stat.
     */
    template <class T>
    Parent &prereq(const T &prereq)
    {
        statData()->prereq = prereq.statData();
        return self();
    }
};

template <class Parent, class Child, template <class Child> class Data>
class WrapVec : public Wrap<Parent, Child, Data>
{
  public:
    // The following functions are specific to vectors.  If you use them
    // in a non vector context, you will get a nice compiler error!

    /**
     * Set the subfield name for the given index, and marks this stat to print
     * at the end of simulation.
     * @param index The subfield index.
     * @param name The new name of the subfield.
     * @return A reference to this stat.
     */
    Parent &subname(int index, const std::string &name)
    {
        std::vector<std::string> &subn = statData()->subnames;
        if (subn.size() <= index)
            subn.resize(index + 1);
        subn[index] = name;
        return self();
    }

    /**
     * Set the subfield description for the given index and marks this stat to
     * print at the end of simulation.
     * @param index The subfield index.
     * @param desc The new description of the subfield
     * @return A reference to this stat.
     */
    Parent &subdesc(int index, const std::string &desc)
    {
        std::vector<std::string> &subd = statData()->subdescs;
        if (subd.size() <= index)
            subd.resize(index + 1);
        subd[index] = desc;

        return self();
    }

};

template <class Parent, class Child, template <class Child> class Data>
class WrapVec2d : public WrapVec<Parent, Child, Data>
{
  public:
    /**
     * @warning This makes the assumption that if you're gonna subnames a 2d
     * vector, you're subnaming across all y
     */
    Parent &ysubnames(const char **names)
    {
        Data<Child> *data = statData();
        data->y_subnames.resize(y);
        for (int i = 0; i < y; ++i)
            data->y_subnames[i] = names[i];
        return self();
    }
    Parent &ysubname(int index, const std::string subname)
    {
        Data<Child> *data = statData();
        assert(i < y);
        data->y_subnames.resize(y);
        data->y_subnames[i] = subname.c_str();
        return self();
    }
};

//////////////////////////////////////////////////////////////////////
//
// Simple Statistics
//
//////////////////////////////////////////////////////////////////////

/**
 * Templatized storage and interface for a simple scalar stat.
 */
template <typename T>
struct StatStor
{
  public:
    /** The paramaters for this storage type, none for a scalar. */
    struct Params { };

  private:
    /** The statistic value. */
    T data;
    static T &Null()
    {
        static T __T = T();
        return __T;
    }

  public:
    /**
     * Builds this storage element and calls the base constructor of the
     * datatype.
     */
    StatStor(const Params &) : data(Null()) {}

    /**
     * The the stat to the given value.
     * @param val The new value.
     * @param p The paramters of this storage type.
     */
    void set(T val, const Params &p) { data = val; }
    /**
     * Increment the stat by the given value.
     * @param val The new value.
     * @param p The paramters of this storage type.
     */
    void inc(T val, const Params &p) { data += val; }
    /**
     * Decrement the stat by the given value.
     * @param val The new value.
     * @param p The paramters of this storage type.
     */
    void dec(T val, const Params &p) { data -= val; }
    /**
     * Return the value of this stat as a result type.
     * @param p The parameters of this storage type.
     * @return The value of this stat.
     */
    result_t val(const Params &p) const { return (result_t)data; }
    /**
     * Return the value of this stat as its base type.
     * @param p The params of this storage type.
     * @return The value of this stat.
     */
    T value(const Params &p) const { return data; }
    /**
     * Reset stat value to default
     */
    void reset() { data = Null(); }

    /**
     * @return true if zero value
     */
    bool zero() const { return data == Null(); }
};

/**
 * Templatized storage and interface to a per-cycle average stat. This keeps
 * a current count and updates a total (count * cycles) when this count
 * changes. This allows the quick calculation of a per cycle count of the item
 * being watched. This is good for keeping track of residencies in structures
 * among other things.
 * @todo add lateny to the stat and fix binning.
 */
template <typename T>
struct AvgStor
{
  public:
    /** The paramaters for this storage type */
    struct Params
    {
        /**
         * The current count.  We stash this here because the current
         * value is not a binned value.
         */
        T current;
    };

  private:
    /** The total count for all cycles. */
    mutable result_t total;
    /** The cycle that current last changed. */
    mutable Tick last;

  public:
    /**
     * Build and initializes this stat storage.
     */
    AvgStor(Params &p) : total(0), last(0) { p.current = T(); }

    /**
     * Set the current count to the one provided, update the total and last
     * set values.
     * @param val The new count.
     * @param p The parameters for this storage.
     */
    void set(T val, Params &p) {
        total += p.current * (curTick - last);
        last = curTick;
        p.current = val;
    }

    /**
     * Increment the current count by the provided value, calls set.
     * @param val The amount to increment.
     * @param p The parameters for this storage.
     */
    void inc(T val, Params &p) { set(p.current + val, p); }

    /**
     * Deccrement the current count by the provided value, calls set.
     * @param val The amount to decrement.
     * @param p The parameters for this storage.
     */
    void dec(T val, Params &p) { set(p.current - val, p); }

    /**
     * Return the current average.
     * @param p The parameters for this storage.
     * @return The current average.
     */
    result_t val(const Params &p) const {
        total += p.current * (curTick - last);
        last = curTick;
        return (result_t)(total + p.current) / (result_t)(curTick + 1);
    }

    /**
     * Return the current count.
     * @param p The parameters for this storage.
     * @return The current count.
     */
    T value(const Params &p) const { return p.current; }

    /**
     * Reset stat value to default
     */
    void reset()
    {
        total = 0;
        last = curTick;
    }

    /**
     * @return true if zero value
     */
    bool zero() const { return total == 0.0; }
};

/**
 * Implementation of a scalar stat. The type of stat is determined by the
 * Storage template. The storage for this stat is held within the Bin class.
 * This allows for breaking down statistics across multiple bins easily.
 */
template <typename T, template <typename T> class Storage, class Bin>
class ScalarBase : public DataAccess
{
  public:
    /** Define the type of the storage class. */
    typedef Storage<T> storage_t;
    /** Define the params of the storage class. */
    typedef typename storage_t::Params params_t;
    /** Define the bin type. */
    typedef typename Bin::Bin<storage_t> bin_t;

  protected:
    /** The bin of this stat. */
    bin_t bin;
    /** The parameters for this stat. */
    params_t params;

  protected:
    /**
     * Retrieve the storage from the bin.
     * @return The storage object for this stat.
     */
    storage_t *data() { return bin.data(params); }
    /**
     * Retrieve a const pointer to the storage from the bin.
     * @return A const pointer to the storage object for this stat.
     */
    const storage_t *data() const
    {
        bin_t *_bin = const_cast<bin_t *>(&bin);
        params_t *_params = const_cast<params_t *>(&params);
        return _bin->data(*_params);
    }

  protected:
    /**
     * Copy constructor, copies are not allowed.
     */
    ScalarBase(const ScalarBase &stat);
    /**
     * Can't copy stats.
     */
    const ScalarBase &operator=(const ScalarBase &);

  public:
    /**
     * Return the current value of this stat as its base type.
     * @return The current value.
     */
    T value() const { return data()->value(params); }

  public:
    /**
     * Create and initialize this stat, register it with the database.
     */
    ScalarBase()
    {
        bin.init(params);
    }

  public:
    // Common operators for stats
    /**
     * Increment the stat by 1. This calls the associated storage object inc
     * function.
     */
    void operator++() { data()->inc(1, params); }
    /**
     * Decrement the stat by 1. This calls the associated storage object dec
     * function.
     */
    void operator--() { data()->dec(1, params); }

    /** Increment the stat by 1. */
    void operator++(int) { ++*this; }
    /** Decrement the stat by 1. */
    void operator--(int) { --*this; }

    /**
     * Set the data value to the given value. This calls the associated storage
     * object set function.
     * @param v The new value.
     */
    template <typename U>
    void operator=(const U& v) { data()->set(v, params); }

    /**
     * Increment the stat by the given value. This calls the associated
     * storage object inc function.
     * @param v The value to add.
     */
    template <typename U>
    void operator+=(const U& v) { data()->inc(v, params); }

    /**
     * Decrement the stat by the given value. This calls the associated
     * storage object dec function.
     * @param v The value to substract.
     */
    template <typename U>
    void operator-=(const U& v) { data()->dec(v, params); }

    /**
     * Return the number of elements, always 1 for a scalar.
     * @return 1.
     */
    size_t size() const { return 1; }
    /**
     * Return true if stat is binned.
     *@return True is stat is binned.
     */
    bool binned() const { return bin_t::binned; }

    bool check() const { return bin.initialized(); }

    /**
     * Reset stat value to default
     */
    void reset() { bin.reset(); }

    result_t val() { return data()->val(params); }

    result_t total() { return val(); }

    bool zero() { return val() == 0.0; }
};

//////////////////////////////////////////////////////////////////////
//
// Vector Statistics
//
//////////////////////////////////////////////////////////////////////
template <typename T, template <typename T> class Storage, class Bin>
class ScalarProxy;

/**
 * Implementation of a vector of stats. The type of stat is determined by the
 * Storage class. @sa ScalarBase
 */
template <typename T, template <typename T> class Storage, class Bin>
class VectorBase : public DataAccess
{
  public:
    /** Define the type of the storage class. */
    typedef Storage<T> storage_t;
    /** Define the params of the storage class. */
    typedef typename storage_t::Params params_t;
    /** Define the bin type. */
    typedef typename Bin::VectorBin<storage_t> bin_t;

  protected:
    /** The bin of this stat. */
    bin_t bin;
    /** The parameters for this stat. */
    params_t params;

  protected:
    /**
     * Retrieve the storage from the bin  for the given index.
     * @param index The vector index to access.
     * @return The storage object at the given index.
     */
    storage_t *data(int index) { return bin.data(index, params); }
    /**
     * Retrieve a const pointer to the storage from the bin
     * for the given index.
     * @param index The vector index to access.
     * @return A const pointer to the storage object at the given index.
     */
    const storage_t *data(int index) const
    {
        bin_t *_bin = const_cast<bin_t *>(&bin);
        params_t *_params = const_cast<params_t *>(&params);
        return _bin->data(index, *_params);
    }

  protected:
    // Copying stats is not allowed
    /** Copying stats isn't allowed. */
    VectorBase(const VectorBase &stat);
    /** Copying stats isn't allowed. */
    const VectorBase &operator=(const VectorBase &);

  public:
    /**
     * Copy the values to a local vector and return a reference to it.
     * @return A reference to a vector of the stat values.
     */
    void val(rvec_t &vec) const
    {
        vec.resize(size());
        for (int i = 0; i < size(); ++i)
            vec[i] = data(i)->val(params);
    }

    /**
     * @return True is stat is binned.
     */
    bool binned() const { return bin_t::binned; }

    /**
     * Return a total of all entries in this vector.
     * @return The total of all vector entries.
     */
    result_t total() const {
        result_t total = 0.0;
        for (int i = 0; i < size(); ++i)
            total += data(i)->val(params);
        return total;
    }

    /**
     * @return the number of elements in this vector.
     */
    size_t size() const { return bin.size(); }

    bool zero() const
    {
        for (int i = 0; i < size(); ++i)
            if (data(i)->zero())
                return true;
        return false;
    }

    bool check() const { return bin.initialized(); }
    void reset() { bin.reset(); }

  public:
    VectorBase() {}

    /** Friend this class with the associated scalar proxy. */
    friend class ScalarProxy<T, Storage, Bin>;

    /**
     * Return a reference (ScalarProxy) to the stat at the given index.
     * @param index The vector index to access.
     * @return A reference of the stat.
     */
    ScalarProxy<T, Storage, Bin> operator[](int index);

    void update(StatData *data) {}
};

const StatData * getStatData(const void *stat);

/**
 * A proxy class to access the stat at a given index in a VectorBase stat.
 * Behaves like a ScalarBase.
 */
template <typename T, template <typename T> class Storage, class Bin>
class ScalarProxy
{
  public:
    /** Define the type of the storage class. */
    typedef Storage<T> storage_t;
    /** Define the params of the storage class. */
    typedef typename storage_t::Params params_t;
    /** Define the bin type. */
    typedef typename Bin::VectorBin<storage_t> bin_t;

  private:
    /** Pointer to the bin in the parent VectorBase. */
    bin_t *bin;
    /** Pointer to the params in the parent VectorBase. */
    params_t *params;
    /** The index to access in the parent VectorBase. */
    int index;
    /** Keep a pointer to the original stat so was can get data */
    void *stat;

  protected:
    /**
     * Retrieve the storage from the bin.
     * @return The storage from the bin for this stat.
     */
    storage_t *data() { return bin->data(index, *params); }
    /**
     * Retrieve a const pointer to the storage from the bin.
     * @return A const pointer to the storage for this stat.
     */
    const storage_t *data() const
    {
        bin_t *_bin = const_cast<bin_t *>(bin);
        params_t *_params = const_cast<params_t *>(params);
        return _bin->data(index, *_params);
    }

  public:
    /**
     * Return the current value of this statas a result type.
     * @return The current value.
     */
    result_t val() const { return data()->val(*params); }
    /**
     * Return the current value of this stat as its base type.
     * @return The current value.
     */
    T value() const { return data()->value(*params); }

  public:
    /**
     * Create and initialize this proxy, do not register it with the database.
     * @param b The bin to use.
     * @param p The params to use.
     * @param i The index to access.
     */
    ScalarProxy(bin_t &b, params_t &p, int i, void *s)
        : bin(&b), params(&p), index(i), stat(s)  {}
    /**
     * Create a copy of the provided ScalarProxy.
     * @param sp The proxy to copy.
     */
    ScalarProxy(const ScalarProxy &sp)
        : bin(sp.bin), params(sp.params), index(sp.index), stat(sp.stat) {}
    /**
     * Set this proxy equal to the provided one.
     * @param sp The proxy to copy.
     * @return A reference to this proxy.
     */
    const ScalarProxy &operator=(const ScalarProxy &sp) {
        bin = sp.bin;
        params = sp.params;
        index = sp.index;
        stat = sp.stat;
        return *this;
    }

  public:
    // Common operators for stats
    /**
     * Increment the stat by 1. This calls the associated storage object inc
     * function.
     */
    void operator++() { data()->inc(1, *params); }
    /**
     * Decrement the stat by 1. This calls the associated storage object dec
     * function.
     */
    void operator--() { data()->dec(1, *params); }

    /** Increment the stat by 1. */
    void operator++(int) { ++*this; }
    /** Decrement the stat by 1. */
    void operator--(int) { --*this; }

    /**
     * Set the data value to the given value. This calls the associated storage
     * object set function.
     * @param v The new value.
     */
    template <typename U>
    void operator=(const U& v) { data()->set(v, *params); }

    /**
     * Increment the stat by the given value. This calls the associated
     * storage object inc function.
     * @param v The value to add.
     */
    template <typename U>
    void operator+=(const U& v) { data()->inc(v, *params); }

    /**
     * Decrement the stat by the given value. This calls the associated
     * storage object dec function.
     * @param v The value to substract.
     */
    template <typename U>
    void operator-=(const U& v) { data()->dec(v, *params); }

    /**
     * Return the number of elements, always 1 for a scalar.
     * @return 1.
     */
    size_t size() const { return 1; }

    /**
     * Return true if stat is binned.
     *@return false since Proxies aren't printed/binned
     */
    bool binned() const { return false; }

    /**
     * This stat has no state.  Nothing to reset
     */
    void reset() {  }

  public:
    const StatData *statData() const { return getStatData(stat); }
    std::string str() const
    {
        return csprintf("%s[%d]", statData()->name, index);

    }
};

template <typename T, template <typename T> class Storage, class Bin>
inline ScalarProxy<T, Storage, Bin>
VectorBase<T, Storage, Bin>::operator[](int index)
{
    assert (index >= 0 && index < size());
    return ScalarProxy<T, Storage, Bin>(bin, params, index, this);
}

template <typename T, template <typename T> class Storage, class Bin>
class VectorProxy;

template <typename T, template <typename T> class Storage, class Bin>
class Vector2dBase : public DataAccess
{
  public:
    typedef Storage<T> storage_t;
    typedef typename storage_t::Params params_t;
    typedef typename Bin::VectorBin<storage_t> bin_t;

  protected:
    size_t x;
    size_t y;
    bin_t bin;
    params_t params;

  protected:
    storage_t *data(int index) { return bin.data(index, params); }
    const storage_t *data(int index) const
    {
        bin_t *_bin = const_cast<bin_t *>(&bin);
        params_t *_params = const_cast<params_t *>(&params);
        return _bin->data(index, *_params);
    }

  protected:
    // Copying stats is not allowed
    Vector2dBase(const Vector2dBase &stat);
    const Vector2dBase &operator=(const Vector2dBase &);

  public:
    Vector2dBase() {}

    void update(Vector2dDataBase *data)
    {
        int size = this->size();
        data->vec.resize(size);
        for (int i = 0; i < size; ++i)
            data->vec[i] = this->data(i)->val(params);
    }

    std::string ysubname(int i) const { return (*y_subnames)[i]; }

    friend class VectorProxy<T, Storage, Bin>;
    VectorProxy<T, Storage, Bin> operator[](int index);

    size_t size() const { return bin.size(); }
    bool zero() const { return data(0)->value(params) == 0.0; }

    /**
     * Reset stat value to default
     */
    void reset() { bin.reset(); }

    bool check() { return bin.initialized(); }
};

template <typename T, template <typename T> class Storage, class Bin>
class VectorProxy
{
  public:
    typedef Storage<T> storage_t;
    typedef typename storage_t::Params params_t;
    typedef typename Bin::VectorBin<storage_t> bin_t;

  private:
    bin_t *bin;
    params_t *params;
    int offset;
    int len;
    void *stat;

  private:
    mutable rvec_t *vec;

    storage_t *data(int index) {
        assert(index < len);
        return bin->data(offset + index, *params);
    }

    const storage_t *data(int index) const {
        bin_t *_bin = const_cast<bin_t *>(bin);
        params_t *_params = const_cast<params_t *>(params);
        return _bin->data(offset + index, *_params);
    }

  public:
    const rvec_t &val() const {
        if (vec)
            vec->resize(size());
        else
            vec = new rvec_t(size());

        for (int i = 0; i < size(); ++i)
            (*vec)[i] = data(i)->val(*params);

        return *vec;
    }

    result_t total() const {
        result_t total = 0.0;
        for (int i = 0; i < size(); ++i)
            total += data(i)->val(*params);
        return total;
    }

  public:
    VectorProxy(bin_t &b, params_t &p, int o, int l, void *s)
        : bin(&b), params(&p), offset(o), len(l), stat(s), vec(NULL)
    {
    }

    VectorProxy(const VectorProxy &sp)
        : bin(sp.bin), params(sp.params), offset(sp.offset), len(sp.len),
          stat(sp.stat), vec(NULL)
    {
    }

    ~VectorProxy()
    {
        if (vec)
            delete vec;
    }

    const VectorProxy &operator=(const VectorProxy &sp)
    {
        bin = sp.bin;
        params = sp.params;
        offset = sp.offset;
        len = sp.len;
        stat = sp.stat;
        if (vec)
            delete vec;
        vec = NULL;
        return *this;
    }

    ScalarProxy<T, Storage, Bin> operator[](int index)
    {
        assert (index >= 0 && index < size());
        return ScalarProxy<T, Storage, Bin>(*bin, *params, offset + index,
                                            stat);
    }

    size_t size() const { return len; }

    /**
     * Return true if stat is binned.
     *@return false since Proxies aren't printed/binned
     */
    bool binned() const { return false; }

    /**
     * This stat has no state.  Nothing to reset.
     */
    void reset() { }
};

template <typename T, template <typename T> class Storage, class Bin>
inline VectorProxy<T, Storage, Bin>
Vector2dBase<T, Storage, Bin>::operator[](int index)
{
    int offset = index * y;
    assert (index >= 0 && offset < size());
    return VectorProxy<T, Storage, Bin>(bin, params, offset, y, this);
}

//////////////////////////////////////////////////////////////////////
//
// Non formula statistics
//
//////////////////////////////////////////////////////////////////////

/**
 * Templatized storage and interface for a distrbution stat.
 */
template <typename T>
struct DistStor
{
  public:
    /** The parameters for a distribution stat. */
    struct Params
    {
        /** The minimum value to track. */
        int min;
        /** The maximum value to track. */
        int max;
        /** The number of entries in each bucket. */
        int bucket_size;
        /** The number of buckets. Equal to (max-min)/bucket_size. */
        int size;
    };
    enum { fancy = false };

  private:
    /** The smallest value sampled. */
    T min_val;
    /** The largest value sampled. */
    T max_val;
    /** The number of values sampled less than min. */
    T underflow;
    /** The number of values sampled more than max. */
    T overflow;
    /** The current sum. */
    T sum;
    /** The sum of squares. */
    T squares;
    /** The number of samples. */
    int samples;
    /** Counter for each bucket. */
    std::vector<T> vec;

  public:
    /**
     * Construct this storage with the supplied params.
     * @param params The parameters.
     */
    DistStor(const Params &params)
        : min_val(INT_MAX), max_val(INT_MIN), underflow(0), overflow(0),
          sum(T()), squares(T()), samples(0), vec(params.size)
    {
        reset();
    }

    /**
     * Add a value to the distribution for the given number of times.
     * @param val The value to add.
     * @param number The number of times to add the value.
     * @param params The paramters of the distribution.
     */
    void sample(T val, int number, const Params &params)
    {
        if (val < params.min)
            underflow += number;
        else if (val > params.max)
            overflow += number;
        else {
            int index = (val - params.min) / params.bucket_size;
            assert(index < size(params));
            vec[index] += number;
        }

        if (val < min_val)
            min_val = val;

        if (val > max_val)
            max_val = val;

        T sample = val * number;
        sum += sample;
        squares += sample * sample;
        samples += number;
    }

    /**
     * Return the number of buckets in this distribution.
     * @return the number of buckets.
     * @todo Is it faster to return the size from the parameters?
     */
    size_t size(const Params &) const { return vec.size(); }

    /**
     * Returns true if any calls to sample have been made.
     * @param params The paramters of the distribution.
     * @return True if any values have been sampled.
     */
    bool zero(const Params &params) const
    {
        return samples == 0;
    }

    void update(DistDataData *data, const Params &params)
    {
        data->min = params.min;
        data->max = params.max;
        data->bucket_size = params.bucket_size;
        data->size = params.size;

        data->min_val = (min_val == INT_MAX) ? 0 : min_val;
        data->max_val = (max_val == INT_MIN) ? 0 : max_val;
        data->underflow = underflow;
        data->overflow = overflow;
        data->vec.resize(params.size);
        for (int i = 0; i < params.size; ++i)
            data->vec[i] = vec[i];

        data->sum = sum;
        data->squares = squares;
        data->samples = samples;
    }

    /**
     * Reset stat value to default
     */
    void reset()
    {
        min_val = INT_MAX;
        max_val = INT_MIN;
        underflow = 0;
        overflow = 0;

        int size = vec.size();
        for (int i = 0; i < size; ++i)
            vec[i] = T();

        sum = T();
        squares = T();
        samples = T();
    }
};

/**
 * Templatized storage and interface for a distribution that calculates mean
 * and variance.
 */
template <typename T>
struct FancyStor
{
  public:
    /**
     * No paramters for this storage.
     */
    struct Params {};
    enum { fancy = true };

  private:
    /** The current sum. */
    T sum;
    /** The sum of squares. */
    T squares;
    /** The number of samples. */
    int samples;

  public:
    /**
     * Create and initialize this storage.
     */
    FancyStor(const Params &) : sum(T()), squares(T()), samples(0) {}

    /**
     * Add a value the given number of times to this running average.
     * Update the running sum and sum of squares, increment the number of
     * values seen by the given number.
     * @param val The value to add.
     * @param number The number of times to add the value.
     * @param p The parameters of this stat.
     */
    void sample(T val, int number, const Params &p)
    {
        T value = val * number;
        sum += value;
        squares += value * value;
        samples += number;
    }

    void update(DistDataData *data, const Params &params)
    {
        data->sum = sum;
        data->squares = squares;
        data->samples = samples;
    }

    /**
     * Return the number of entries in this stat, 1
     * @return 1.
     */
    size_t size(const Params &) const { return 1; }

    /**
     * Return true if no samples have been added.
     * @return True if no samples have been added.
     */
    bool zero(const Params &) const { return samples == 0; }

    /**
     * Reset stat value to default
     */
    void reset()
    {
        sum = T();
        squares = T();
        samples = 0;
    }
};

/**
 * Templatized storage for distribution that calculates per cycle mean and
 * variance.
 */
template <typename T>
struct AvgFancy
{
  public:
    /** No parameters for this storage. */
    struct Params {};
    enum { fancy = true };

  private:
    /** Current total. */
    T sum;
    /** Current sum of squares. */
    T squares;

  public:
    /**
     * Create and initialize this storage.
     */
    AvgFancy(const Params &) : sum(T()), squares(T()) {}

    /**
     * Add a value to the distribution for the given number of times.
     * Update the running sum and sum of squares.
     * @param val The value to add.
     * @param number The number of times to add the value.
     * @param p The paramters of the distribution.
     */
    void sample(T val, int number, const Params& p)
    {
        T value = val * number;
        sum += value;
        squares += value * value;
    }

    void update(DistDataData *data, const Params &params)
    {
        data->sum = sum;
        data->squares = squares;
        data->samples = curTick;
    }

    /**
     * Return the number of entries, in this case 1.
     * @return 1.
     */
    size_t size(const Params &params) const { return 1; }
    /**
     * Return true if no samples have been added.
     * @return True if the sum is zero.
     */
    bool zero(const Params &params) const { return sum == 0; }
    /**
     * Reset stat value to default
     */
    void reset()
    {
        sum = T();
        squares = T();
    }
};

/**
 * Implementation of a distribution stat. The type of distribution is
 * determined by the Storage template. @sa ScalarBase
 */
template <typename T, template <typename T> class Storage, class Bin>
class DistBase : public DataAccess
{
  public:
    /** Define the type of the storage class. */
    typedef Storage<T> storage_t;
    /** Define the params of the storage class. */
    typedef typename storage_t::Params params_t;
    /** Define the bin type. */
    typedef typename Bin::Bin<storage_t> bin_t;

  protected:
    /** The bin of this stat. */
    bin_t bin;
    /** The parameters for this stat. */
    params_t params;

  protected:
    /**
     * Retrieve the storage from the bin.
     * @return The storage object for this stat.
     */
    storage_t *data() { return bin.data(params); }
    /**
     * Retrieve a const pointer to the storage from the bin.
     * @return A const pointer to the storage object for this stat.
     */
    const storage_t *data() const
    {
        bin_t *_bin = const_cast<bin_t *>(&bin);
        params_t *_params = const_cast<params_t *>(&params);
        return _bin->data(*_params);
    }

  protected:
    // Copying stats is not allowed
    /** Copies are not allowed. */
    DistBase(const DistBase &stat);
    /** Copies are not allowed. */
    const DistBase &operator=(const DistBase &);

  public:
    DistBase() { }

    /**
     * Add a value to the distribtion n times. Calls sample on the storage
     * class.
     * @param v The value to add.
     * @param n The number of times to add it, defaults to 1.
     */
    template <typename U>
    void sample(const U& v, int n = 1) { data()->sample(v, n, params); }

    /**
     * Return the number of entries in this stat.
     * @return The number of entries.
     */
    size_t size() const { return data()->size(params); }
    /**
     * Return true if no samples have been added.
     * @return True if there haven't been any samples.
     */
    bool zero() const { return data()->zero(params); }

    void update(DistDataBase *base)
    {
        base->data.fancy = storage_t::fancy;
        data()->update(&(base->data), params);
    }
    /**
     * @return True is stat is binned.
     */
    bool binned() const { return bin_t::binned; }
    /**
     * Reset stat value to default
     */
    void reset()
    {
        bin.reset();
    }

    bool check() { return bin.initialized(); }
};

template <typename T, template <typename T> class Storage, class Bin>
class DistProxy;

template <typename T, template <typename T> class Storage, class Bin>
class VectorDistBase : public DataAccess
{
  public:
    typedef Storage<T> storage_t;
    typedef typename storage_t::Params params_t;
    typedef typename Bin::VectorBin<storage_t> bin_t;

  protected:
    bin_t bin;
    params_t params;

  protected:
    storage_t *data(int index) { return bin.data(index, params); }
    const storage_t *data(int index) const
    {
        bin_t *_bin = const_cast<bin_t *>(&bin);
        params_t *_params = const_cast<params_t *>(&params);
        return _bin->data(index, *_params);
    }

  protected:
    // Copying stats is not allowed
    VectorDistBase(const VectorDistBase &stat);
    const VectorDistBase &operator=(const VectorDistBase &);

  public:
    VectorDistBase() {}

    friend class DistProxy<T, Storage, Bin>;
    DistProxy<T, Storage, Bin> operator[](int index);
    const DistProxy<T, Storage, Bin> operator[](int index) const;

    size_t size() const { return bin.size(); }
    bool zero() const { return false; }
    /**
     * Return true if stat is binned.
     *@return True is stat is binned.
     */
    bool binned() const { return bin_t::binned; }
    /**
     * Reset stat value to default
     */
    void reset() { bin.reset(); }

    bool check() { return bin.initialized(); }
    void update(VectorDistDataBase *base)
    {
        int size = this->size();
        base->data.resize(size);
        for (int i = 0; i < size; ++i) {
            base->data[i].fancy = storage_t::fancy;
            data(i)->update(&(base->data[i]), params);
        }
    }
};

template <typename T, template <typename T> class Storage, class Bin>
class DistProxy
{
  public:
    typedef Storage<T> storage_t;
    typedef typename storage_t::Params params_t;
    typedef typename Bin::Bin<storage_t> bin_t;
    typedef VectorDistBase<T, Storage, Bin> base_t;

  private:
    union {
        base_t *stat;
        const base_t *cstat;
    };
    int index;

  protected:
    storage_t *data() { return stat->data(index); }
    const storage_t *data() const { return cstat->data(index); }

  public:
    DistProxy(const VectorDistBase<T, Storage, Bin> &s, int i)
        : cstat(&s), index(i) {}
    DistProxy(const DistProxy &sp)
        : cstat(sp.cstat), index(sp.index) {}
    const DistProxy &operator=(const DistProxy &sp) {
        cstat = sp.cstat; index = sp.index; return *this;
    }

  public:
    template <typename U>
    void sample(const U& v, int n = 1) { data()->sample(v, n, cstat->params); }

    size_t size() const { return 1; }
    bool zero() const { return data()->zero(cstat->params); }
    /**
     * Return true if stat is binned.
     *@return false since Proxies are not binned/printed.
     */
    bool binned() const { return false; }
    /**
     * Proxy has no state.  Nothing to reset.
     */
    void reset() { }
};

template <typename T, template <typename T> class Storage, class Bin>
inline DistProxy<T, Storage, Bin>
VectorDistBase<T, Storage, Bin>::operator[](int index)
{
    assert (index >= 0 && index < size());
    return DistProxy<T, Storage, Bin>(*this, index);
}

template <typename T, template <typename T> class Storage, class Bin>
inline const DistProxy<T, Storage, Bin>
VectorDistBase<T, Storage, Bin>::operator[](int index) const
{
    assert (index >= 0 && index < size());
    return DistProxy<T, Storage, Bin>(*this, index);
}

#if 0
template <typename T, template <typename T> class Storage, class Bin>
result_t
VectorDistBase<T, Storage, Bin>::total(int index) const
{
    int total = 0;
    for (int i=0; i < x_size(); ++i) {
        total += data(i)->val(*params);
    }
}
#endif

//////////////////////////////////////////////////////////////////////
//
//  Formula Details
//
//////////////////////////////////////////////////////////////////////

/**
 * Base class for formula statistic node. These nodes are used to build a tree
 * that represents the formula.
 */
class Node : public RefCounted
{
  public:
    /**
     * Return the number of nodes in the subtree starting at this node.
     * @return the number of nodes in this subtree.
     */
    virtual size_t size() const = 0;
    /**
     * Return the result vector of this subtree.
     * @return The result vector of this subtree.
     */
    virtual const rvec_t &val() const = 0;
    /**
     * Return the total of the result vector.
     * @return The total of the result vector.
     */
    virtual result_t total() const = 0;
    /**
     * Return true if stat is binned.
     *@return True is stat is binned.
     */
    virtual bool binned() const = 0;

    /**
     *
     */
    virtual std::string str() const = 0;
};

/** Reference counting pointer to a function Node. */
typedef RefCountingPtr<Node> NodePtr;

class ScalarStatNode : public Node
{
  private:
    const ScalarDataBase *data;
    mutable rvec_t result;

  public:
    ScalarStatNode(const ScalarDataBase *d) : data(d), result(1) {}
    virtual const rvec_t &val() const
    {
        result[0] = data->val();
        return result;
    }
    virtual result_t total() const { return data->val(); };

    virtual size_t size() const { return 1; }
    /**
     * Return true if stat is binned.
     *@return True is stat is binned.
     */
    virtual bool binned() const { return data->binned(); }

    /**
     *
     */
    virtual std::string str() const { return data->name; }
};

template <typename T, template <typename T> class Storage, class Bin>
class ScalarProxyNode : public Node
{
  private:
    const ScalarProxy<T, Storage, Bin> proxy;
    mutable rvec_t result;

  public:
    ScalarProxyNode(const ScalarProxy<T, Storage, Bin> &p)
        : proxy(p), result(1) { }
    virtual const rvec_t &val() const
    {
        result[0] = proxy.val();
        return result;
    }
    virtual result_t total() const { return proxy.val(); };

    virtual size_t size() const { return 1; }
    /**
     * Return true if stat is binned.
     *@return True is stat is binned.
     */
    virtual bool binned() const { return proxy.binned(); }

    /**
     *
     */
    virtual std::string str() const { return proxy.str(); }
};

class VectorStatNode : public Node
{
  private:
    const VectorDataBase *data;

  public:
    VectorStatNode(const VectorDataBase *d) : data(d) { }
    virtual const rvec_t &val() const { return data->val(); }
    virtual result_t total() const { return data->total(); };

    virtual size_t size() const { return data->size(); }
    /**
     * Return true if stat is binned.
     *@return True is stat is binned.
     */
    virtual bool binned() const { return data->binned(); }

    virtual std::string str() const { return data->name; }
};

template <typename T>
class ConstNode : public Node
{
  private:
    rvec_t data;

  public:
    ConstNode(T s) : data(1, (result_t)s) {}
    const rvec_t &val() const { return data; }
    virtual result_t total() const { return data[0]; };

    virtual size_t size() const { return 1; }
    /**
     * Return true if stat is binned.
     *@return False since constants aren't binned.
     */
    virtual bool binned() const { return false; }

    virtual std::string str() const { return to_string(data[0]); }
};

template <typename T>
class FunctorNode : public Node
{
  private:
    T &functor;
    mutable rvec_t result;

  public:
    FunctorNode(T &f) : functor(f) { result.resize(1); }
    const rvec_t &val() const {
        result[0] = (result_t)functor();
        return result;
    }
    virtual result_t total() const { return (result_t)functor(); };

    virtual size_t size() const { return 1; }
    /**
     * Return true if stat is binned.
     *@return False since Functors aren't binned
     */
    virtual bool binned() const { return false; }
    virtual std::string str() const { return to_string(functor()); }
};

template <typename T>
class ScalarNode : public Node
{
  private:
    T &scalar;
    mutable rvec_t result;

  public:
    ScalarNode(T &s) : scalar(s) { result.resize(1); }
    const rvec_t &val() const {
        result[0] = (result_t)scalar;
        return result;
    }
    virtual result_t total() const { return (result_t)scalar; };

    virtual size_t size() const { return 1; }
    /**
     * Return true if stat is binned.
     *@return False since Scalar's aren't binned
     */
    virtual bool binned() const { return false; }
    virtual std::string str() const { return to_string(scalar); }
};

template <class Op>
struct OpString;

template<>
struct OpString<std::plus<result_t> >
{
    static std::string str() { return "+"; }
};

template<>
struct OpString<std::minus<result_t> >
{
    static std::string str() { return "-"; }
};

template<>
struct OpString<std::multiplies<result_t> >
{
    static std::string str() { return "*"; }
};

template<>
struct OpString<std::divides<result_t> >
{
    static std::string str() { return "/"; }
};

template<>
struct OpString<std::modulus<result_t> >
{
    static std::string str() { return "%"; }
};

template<>
struct OpString<std::negate<result_t> >
{
    static std::string str() { return "-"; }
};

template <class Op>
class UnaryNode : public Node
{
  public:
    NodePtr l;
    mutable rvec_t result;

  public:
    UnaryNode(NodePtr &p) : l(p) {}

    const rvec_t &val() const {
        const rvec_t &lvec = l->val();
        int size = lvec.size();

        assert(size > 0);

        result.resize(size);
        Op op;
        for (int i = 0; i < size; ++i)
            result[i] = op(lvec[i]);

        return result;
    }

    result_t total() const {
        Op op;
        return op(l->total());
    }

    virtual size_t size() const { return l->size(); }
    /**
     * Return true if child of node is binned.
     *@return True if child of node is binned.
     */
    virtual bool binned() const { return l->binned(); }

    virtual std::string str() const
    {
        return OpString<Op>::str() + l->str();
    }
};

template <class Op>
class BinaryNode : public Node
{
  public:
    NodePtr l;
    NodePtr r;
    mutable rvec_t result;

  public:
    BinaryNode(NodePtr &a, NodePtr &b) : l(a), r(b) {}

    const rvec_t &val() const {
        Op op;
        const rvec_t &lvec = l->val();
        const rvec_t &rvec = r->val();

        assert(lvec.size() > 0 && rvec.size() > 0);

        if (lvec.size() == 1 && rvec.size() == 1) {
            result.resize(1);
            result[0] = op(lvec[0], rvec[0]);
        } else if (lvec.size() == 1) {
            int size = rvec.size();
            result.resize(size);
            for (int i = 0; i < size; ++i)
                result[i] = op(lvec[0], rvec[i]);
        } else if (rvec.size() == 1) {
            int size = lvec.size();
            result.resize(size);
            for (int i = 0; i < size; ++i)
                result[i] = op(lvec[i], rvec[0]);
        } else if (rvec.size() == lvec.size()) {
            int size = rvec.size();
            result.resize(size);
            for (int i = 0; i < size; ++i)
                result[i] = op(lvec[i], rvec[i]);
        }

        return result;
    }

    result_t total() const {
        Op op;
        return op(l->total(), r->total());
    }

    virtual size_t size() const {
        int ls = l->size();
        int rs = r->size();
        if (ls == 1)
            return rs;
        else if (rs == 1)
            return ls;
        else {
            assert(ls == rs && "Node vector sizes are not equal");
            return ls;
        }
    }
    /**
     * Return true if any children of node are binned
     *@return True if either child of node is binned.
     */
    virtual bool binned() const { return (l->binned() || r->binned()); }

    virtual std::string str() const
    {
        return csprintf("(%s %s %s)", l->str(), OpString<Op>::str(), r->str());
    }
};

template <class Op>
class SumNode : public Node
{
  public:
    NodePtr l;
    mutable rvec_t result;

  public:
    SumNode(NodePtr &p) : l(p), result(1) {}

    const rvec_t &val() const {
        const rvec_t &lvec = l->val();
        int size = lvec.size();
        assert(size > 0);

        result[0] = 0.0;

        Op op;
        for (int i = 0; i < size; ++i)
            result[0] = op(result[0], lvec[i]);

        return result;
    }

    result_t total() const {
        const rvec_t &lvec = l->val();
        int size = lvec.size();
        assert(size > 0);

        result_t result = 0.0;

        Op op;
        for (int i = 0; i < size; ++i)
            result = op(result, lvec[i]);

        return result;
    }

    virtual size_t size() const { return 1; }
    /**
     * Return true if child of node is binned.
     *@return True if child of node is binned.
     */
    virtual bool binned() const { return l->binned(); }

    virtual std::string str() const
    {
        return csprintf("total(%s)", l->str());
    }
};

//////////////////////////////////////////////////////////////////////
//
// Binning Interface
//
//////////////////////////////////////////////////////////////////////
struct MainBin
{
    class BinBase;
    friend class MainBin::BinBase;

  private:
    std::string _name;
    char *mem;

  protected:
    off_t memsize;
    off_t size() const { return memsize; }
    char *memory(off_t off);

  public:
    static MainBin *&curBin()
    {
        static MainBin *current = NULL;
        return current;
    }

    static void setCurBin(MainBin *bin) { curBin() = bin; }
    static MainBin *current() { assert(curBin()); return curBin(); }

    static off_t &offset()
    {
        static off_t offset = 0;
        return offset;
    }

    static off_t new_offset(size_t size)
    {
        size_t mask = sizeof(u_int64_t) - 1;
        off_t off = offset();

        // That one is for the last trailing flags byte.
        offset() += (size + 1 + mask) & ~mask;
        return off;
    }

  public:
    MainBin(const std::string &name);
    ~MainBin();

    const std::string &
    name() const
    {
        return _name;
    }

    void
    activate()
    {
        setCurBin(this);
    }

    class BinBase
    {
      private:
        int offset;

      public:
        BinBase() : offset(-1) {}
        void allocate(size_t size)
        {
            offset = new_offset(size);
        }
        char *access()
        {
            assert(offset != -1);
            return current()->memory(offset);
        }
    };

    template <class Storage>
    class Bin : public BinBase
    {
      public:
        typedef typename Storage::Params Params;

      public:
        enum { binned = true };
        Bin() { allocate(sizeof(Storage)); }
        bool initialized() const { return true; }
        void init(Params &params) { }

        int size() const { return 1; }

        Storage *
        data(Params &params)
        {
            assert(initialized());
            char *ptr = access();
            char *flags = ptr + sizeof(Storage);
            if (!(*flags & 0x1)) {
                *flags |= 0x1;
                new (ptr) Storage(params);
            }
            return reinterpret_cast<Storage *>(ptr);
        }

        void
        reset()
        {
            char *ptr = access();
            char *flags = ptr + size() * sizeof(Storage);
            if (!(*flags & 0x1))
                return;

            Storage *s = reinterpret_cast<Storage *>(ptr);
            s->reset();
        }
    };

    template <class Storage>
    class VectorBin : public BinBase
    {
      public:
        typedef typename Storage::Params Params;

      private:
        int _size;

      public:
        enum { binned = true };
        VectorBin() : _size(0) {}

        bool initialized() const { return _size > 0; }
        void init(int s, Params &params)
        {
            assert(!initialized());
            assert(s > 0);
            _size = s;
            allocate(_size * sizeof(Storage));
        }

        int size() const { return _size; }

        Storage *data(int index, Params &params)
        {
            assert(initialized());
            assert(index >= 0 && index < size());
            char *ptr = access();
            char *flags = ptr + size() * sizeof(Storage);
            if (!(*flags & 0x1)) {
                *flags |= 0x1;
                for (int i = 0; i < size(); ++i)
                    new (ptr + i * sizeof(Storage)) Storage(params);
            }
            return reinterpret_cast<Storage *>(ptr + index * sizeof(Storage));
        }
        void reset()
        {
            char *ptr = access();
            char *flags = ptr + size() * sizeof(Storage);
            if (!(*flags & 0x1))
                return;

            for (int i = 0; i < _size; ++i) {
                char *p = ptr + i * sizeof(Storage);
                Storage *s = reinterpret_cast<Storage *>(p);
                s->reset();
            }
        }
    };
};

struct NoBin
{
    template <class Storage>
    struct Bin
    {
      public:
        typedef typename Storage::Params Params;
        enum { binned = false };

      private:
        char ptr[sizeof(Storage)];

      public:
        ~Bin()
        {
            reinterpret_cast<Storage *>(ptr)->~Storage();
        }

        bool initialized() const { return true; }
        void init(Params &params)
        {
            new (ptr) Storage(params);
        }
        int size() const{ return 1; }
        Storage *data(Params &params)
        {
            assert(initialized());
            return reinterpret_cast<Storage *>(ptr);
        }
        void reset()
        {
            Storage *s = reinterpret_cast<Storage *>(ptr);
            s->reset();
        }
    };

    template <class Storage>
    struct VectorBin
    {
      public:
        typedef typename Storage::Params Params;
        enum { binned = false };

      private:
        char *ptr;
        int _size;

      public:
        VectorBin() : ptr(NULL) { }
        ~VectorBin()
        {
            if (!initialized())
                return;

            for (int i = 0; i < _size; ++i) {
                char *p = ptr + i * sizeof(Storage);
                reinterpret_cast<Storage *>(p)->~Storage();
            }
            delete [] ptr;
        }

        bool initialized() const { return ptr != NULL; }
        void init(int s, Params &params)
        {
            assert(s > 0 && "size must be positive!");
            assert(!initialized());
            _size = s;
            ptr = new char[_size * sizeof(Storage)];
            for (int i = 0; i < _size; ++i)
                new (ptr + i * sizeof(Storage)) Storage(params);
        }

        int size() const { return _size; }

        Storage *data(int index, Params &params)
        {
            assert(initialized());
            assert(index >= 0 && index < size());
            return reinterpret_cast<Storage *>(ptr + index * sizeof(Storage));
        }
        void reset()
        {
            for (int i = 0; i < _size; ++i) {
                char *p = ptr + i * sizeof(Storage);
                Storage *s = reinterpret_cast<Storage *>(p);
                s->reset();
            }
        }
    };
};

//////////////////////////////////////////////////////////////////////
//
// Visible Statistics Types
//
//////////////////////////////////////////////////////////////////////
/**
 * @defgroup VisibleStats "Statistic Types"
 * These are the statistics that are used in the simulator. By default these
 * store counters and don't use binning, but are templatized to accept any type
 * and any Bin class.
 * @{
 */

/**
 * This is an easy way to assign all your stats to be binned or not
 * binned.  If the typedef is NoBin, nothing is binned.  If it is
 * MainBin, then all stats are binned under that Bin.
 */
#ifdef FS_MEASURE
typedef MainBin DefaultBin;
#else
typedef NoBin DefaultBin;
#endif

/**
 * This is a simple scalar statistic, like a counter.
 * @sa Stat, ScalarBase, StatStor
 */
template <typename T = Counter, class Bin = DefaultBin>
class Scalar
    : public Wrap<Scalar<T, Bin>,
                  ScalarBase<T, StatStor, Bin>,
                  ScalarData>
{
  public:
    /** The base implementation. */
    typedef ScalarBase<T, StatStor, Bin> Base;

    Scalar()
    {
        setInit();
    }

    /**
     * Sets the stat equal to the given value. Calls the base implementation
     * of operator=
     * @param v The new value.
     */
    template <typename U>
    void operator=(const U& v) { Base::operator=(v); }
};

/**
 * A stat that calculates the per cycle average of a value.
 * @sa Stat, ScalarBase, AvgStor
 */
template <typename T = Counter, class Bin = DefaultBin>
class Average
    : public Wrap<Average<T, Bin>,
                  ScalarBase<T, AvgStor, Bin>,
                  ScalarData>
{
  public:
    /** The base implementation. */
    typedef ScalarBase<T, AvgStor, Bin> Base;

    Average()
    {
        setInit();
    }

    /**
     * Sets the stat equal to the given value. Calls the base implementation
     * of operator=
     * @param v The new value.
     */
    template <typename U>
    void operator=(const U& v) { Base::operator=(v); }
};

/**
 * A vector of scalar stats.
 * @sa Stat, VectorBase, StatStor
 */
template <typename T = Counter, class Bin = DefaultBin>
class Vector
    : public WrapVec<Vector<T, Bin>,
                     VectorBase<T, StatStor, Bin>,
                     VectorData>
{
  public:
    /** The base implementation. */
    typedef ScalarBase<T, StatStor, Bin> Base;

    /**
     * Set this vector to have the given size.
     * @param size The new size.
     * @return A reference to this stat.
     */
    Vector &init(size_t size) {
        bin.init(size, params);
        setInit();

        return *this;
    }
};

/**
 * A vector of Average stats.
 * @sa Stat, VectorBase, AvgStor
 */
template <typename T = Counter, class Bin = DefaultBin>
class AverageVector
    : public WrapVec<AverageVector<T, Bin>,
                     VectorBase<T, AvgStor, Bin>,
                     VectorData>
{
  public:
    /**
     * Set this vector to have the given size.
     * @param size The new size.
     * @return A reference to this stat.
     */
    AverageVector &init(size_t size) {
        bin.init(size, params);
        setInit();

        return *this;
    }
};

/**
 * A 2-Dimensional vecto of scalar stats.
 * @sa Stat, Vector2dBase, StatStor
 */
template <typename T = Counter, class Bin = DefaultBin>
class Vector2d
    : public WrapVec2d<Vector2d<T, Bin>,
                       Vector2dBase<T, StatStor, Bin>,
                       Vector2dData>
{
  public:
    Vector2d &init(size_t _x, size_t _y) {
        statData()->x = x = _x;
        statData()->y = y = _y;
        bin.init(x * y, params);
        setInit();

        return *this;
    }
};

/**
 * A simple distribution stat.
 * @sa Stat, DistBase, DistStor
 */
template <typename T = Counter, class Bin = DefaultBin>
class Distribution
    : public Wrap<Distribution<T, Bin>,
                  DistBase<T, DistStor, Bin>,
                  DistData>
{
  public:
    /** Base implementation. */
    typedef DistBase<T, DistStor, Bin> Base;
    /** The Parameter type. */
    typedef typename DistStor<T>::Params Params;

  public:
    /**
     * Set the parameters of this distribution. @sa DistStor::Params
     * @param min The minimum value of the distribution.
     * @param max The maximum value of the distribution.
     * @param bkt The number of values in each bucket.
     * @return A reference to this distribution.
     */
    Distribution &init(T min, T max, int bkt) {
        params.min = min;
        params.max = max;
        params.bucket_size = bkt;
        params.size = (max - min) / bkt + 1;
        bin.init(params);
        setInit();

        return *this;
    }
};

/**
 * Calculates the mean and variance of all the samples.
 * @sa Stat, DistBase, FancyStor
 */
template <typename T = Counter, class Bin = DefaultBin>
class StandardDeviation
    : public Wrap<StandardDeviation<T, Bin>,
                  DistBase<T, FancyStor, Bin>,
                  DistData>
{
  public:
    /** The base implementation */
    typedef DistBase<T, DistStor, Bin> Base;
    /** The parameter type. */
    typedef typename DistStor<T>::Params Params;

  public:
    /**
     * Construct and initialize this distribution.
     */
    StandardDeviation() {
        bin.init(params);
        setInit();
    }
};

/**
 * Calculates the per cycle mean and variance of the samples.
 * @sa Stat, DistBase, AvgFancy
 */
template <typename T = Counter, class Bin = DefaultBin>
class AverageDeviation
    : public Wrap<AverageDeviation<T, Bin>,
                  DistBase<T, AvgFancy, Bin>,
                  DistData>
{
  public:
    /** The base implementation */
    typedef DistBase<T, DistStor, Bin> Base;
    /** The parameter type. */
    typedef typename DistStor<T>::Params Params;

  public:
    /**
     * Construct and initialize this distribution.
     */
    AverageDeviation()
    {
        bin.init(params);
        setInit();
    }
};

/**
 * A vector of distributions.
 * @sa Stat, VectorDistBase, DistStor
 */
template <typename T = Counter, class Bin = DefaultBin>
class VectorDistribution
    : public WrapVec<VectorDistribution<T, Bin>,
                     VectorDistBase<T, DistStor, Bin>,
                     VectorDistData>
{
  public:
    /** The base implementation */
    typedef VectorDistBase<T, DistStor, Bin> Base;
    /** The parameter type. */
    typedef typename DistStor<T>::Params Params;

  public:
    /**
     * Initialize storage and parameters for this distribution.
     * @param size The size of the vector (the number of distributions).
     * @param min The minimum value of the distribution.
     * @param max The maximum value of the distribution.
     * @param bkt The number of values in each bucket.
     * @return A reference to this distribution.
     */
    VectorDistribution &init(int size, T min, T max, int bkt) {
        params.min = min;
        params.max = max;
        params.bucket_size = bkt;
        params.size = (max - min) / bkt + 1;
        bin.init(size, params);
        setInit();

        return *this;
    }
};

/**
 * This is a vector of StandardDeviation stats.
 * @sa Stat, VectorDistBase, FancyStor
 */
template <typename T = Counter, class Bin = DefaultBin>
class VectorStandardDeviation
    : public WrapVec<VectorStandardDeviation<T, Bin>,
                     VectorDistBase<T, FancyStor, Bin>,
                     VectorDistData>
{
  public:
    /** The base implementation */
    typedef VectorDistBase<T, FancyStor, Bin> Base;
    /** The parameter type. */
    typedef typename DistStor<T>::Params Params;

  public:
    /**
     * Initialize storage for this distribution.
     * @param size The size of the vector.
     * @return A reference to this distribution.
     */
    VectorStandardDeviation &init(int size) {
        bin.init(size, params);
        setInit();

        return *this;
    }
};

/**
 * This is a vector of AverageDeviation stats.
 * @sa Stat, VectorDistBase, AvgFancy
 */
template <typename T = Counter, class Bin = DefaultBin>
class VectorAverageDeviation
    : public WrapVec<VectorAverageDeviation<T, Bin>,
                     VectorDistBase<T, AvgFancy, Bin>,
                     VectorDistData>
{
  public:
    /** The base implementation */
    typedef VectorDistBase<T, AvgFancy, Bin> Base;
    /** The parameter type. */
    typedef typename DistStor<T>::Params Params;

  public:
    /**
     * Initialize storage for this distribution.
     * @param size The size of the vector.
     * @return A reference to this distribution.
     */
    VectorAverageDeviation &init(int size) {
        bin.init(size, params);
        setInit();

        return *this;
    }
};

/**
 * A formula for statistics that is calculated when printed. A formula is
 * stored as a tree of Nodes that represent the equation to calculate.
 * @sa Stat, ScalarStat, VectorStat, Node, Temp
 */
class FormulaBase : public DataAccess
{
  protected:
    /** The root of the tree which represents the Formula */
    NodePtr root;
    friend class Temp;

  public:
    /**
     * Return the result of the Fomula in a vector.  If there were no Vector
     * components to the Formula, then the vector is size 1.  If there were,
     * like x/y with x being a vector of size 3, then the result returned will
     * be x[0]/y, x[1]/y, x[2]/y, respectively.
     * @return The result vector.
     */
    void val(rvec_t &vec) const;

    /**
     * Return the total Formula result.  If there is a Vector
     * component to this Formula, then this is the result of the
     * Formula if the formula is applied after summing all the
     * components of the Vector.  For example, if Formula is x/y where
     * x is size 3, then total() will return (x[1]+x[2]+x[3])/y.  If
     * there is no Vector component, total() returns the same value as
     * the first entry in the rvec_t val() returns.
     * @return The total of the result vector.
     */
    result_t total() const;

    /**
     * Return the number of elements in the tree.
     */
    size_t size() const;

    /**
     * Return true if Formula is binned. i.e. any of its children
     * nodes are binned
     * @return True if Formula is binned.
     */
    bool binned() const;

    bool check() const { return true; }

    /**
     * Formulas don't need to be reset
     */
    void reset();

    /**
     *
     */
    bool zero() const;

    /**
     *
     */
    void update(StatData *);

    std::string str() const;
};

class FormulaDataBase : public VectorDataBase
{
  public:
    virtual std::string str() const = 0;
    virtual bool check() const { return true; }
    virtual void python(Python &py) const;
};

template <class T>
class FormulaData : public FormulaDataBase
{
  protected:
    T &s;
    mutable rvec_t vec;

  public:
    FormulaData(T &stat) : s(stat) {}

    virtual bool binned() const { return s.binned(); }
    virtual bool zero() const { return s.zero(); }
    virtual void reset() { s.reset(); }

    virtual size_t size() const { return s.size(); }
    virtual const rvec_t &val() const
    {
        s.val(vec);
        return vec;
    }
    virtual result_t total() const { return s.total(); }
    virtual void update()
    {
        VectorDataBase::update();
        s.update(this);
    }
    virtual std::string str() const { return s.str(); }
};

class Temp;
class Formula
    : public WrapVec<Formula,
                     FormulaBase,
                     FormulaData>
{
  public:
    /**
     * Create and initialize thie formula, and register it with the database.
     */
    Formula();

    /**
     * Create a formula with the given root node, register it with the
     * database.
     * @param r The root of the expression tree.
     */
    Formula(Temp r);

    /**
     * Set an unitialized Formula to the given root.
     * @param r The root of the expression tree.
     * @return a reference to this formula.
     */
    const Formula &operator=(Temp r);

    /**
     * Add the given tree to the existing one.
     * @param r The root of the expression tree.
     * @return a reference to this formula.
     */
    const Formula &operator+=(Temp r);
};

class FormulaNode : public Node
{
  private:
    const Formula &formula;
    mutable rvec_t vec;

  public:
    FormulaNode(const Formula &f) : formula(f) {}

    virtual size_t size() const { return formula.size(); }
    virtual const rvec_t &val() const { formula.val(vec); return vec; }
    virtual result_t total() const { return formula.total(); }
    virtual bool binned() const { return formula.binned(); }

    virtual std::string str() const { return formula.str(); }
};

/**
 * Helper class to construct formula node trees.
 */
class Temp
{
  protected:
    /**
     * Pointer to a Node object.
     */
    NodePtr node;

  public:
    /**
     * Copy the given pointer to this class.
     * @param n A pointer to a Node object to copy.
     */
    Temp(NodePtr n) : node(n) { }

    /**
     * Return the node pointer.
     * @return the node pointer.
     */
    operator NodePtr&() { return node;}

  public:
    /**
     * Create a new ScalarStatNode.
     * @param s The ScalarStat to place in a node.
     */
    template <typename T, class Bin>
    Temp(const Scalar<T, Bin> &s)
        : node(new ScalarStatNode(s.statData())) { }

    /**
     * Create a new ScalarStatNode.
     * @param s The ScalarStat to place in a node.
     */
    template <typename T, class Bin>
    Temp(const Average<T, Bin> &s)
        : node(new ScalarStatNode(s.statData())) { }

    /**
     * Create a new VectorStatNode.
     * @param s The VectorStat to place in a node.
     */
    template <typename T, class Bin>
    Temp(const Vector<T, Bin> &s)
        : node(new VectorStatNode(s.statData())) { }

    /**
     *
     */
    Temp(const Formula &f)
        : node(new FormulaNode(f)) { }

    /**
     * Create a new ScalarProxyNode.
     * @param p The ScalarProxy to place in a node.
     */
    template <typename T, template <typename T> class Storage, class Bin>
    Temp(const ScalarProxy<T, Storage, Bin> &p)
        : node(new ScalarProxyNode<T, Storage, Bin>(p)) { }

    /**
     * Create a ConstNode
     * @param value The value of the const node.
     */
    Temp(signed char value)
        : node(new ConstNode<signed char>(value)) {}

    /**
     * Create a ConstNode
     * @param value The value of the const node.
     */
    Temp(unsigned char value)
        : node(new ConstNode<unsigned char>(value)) {}

    /**
     * Create a ConstNode
     * @param value The value of the const node.
     */
    Temp(signed short value)
        : node(new ConstNode<signed short>(value)) {}

    /**
     * Create a ConstNode
     * @param value The value of the const node.
     */
    Temp(unsigned short value)
        : node(new ConstNode<unsigned short>(value)) {}

    /**
     * Create a ConstNode
     * @param value The value of the const node.
     */
    Temp(signed int value)
        : node(new ConstNode<signed int>(value)) {}

    /**
     * Create a ConstNode
     * @param value The value of the const node.
     */
    Temp(unsigned int value)
        : node(new ConstNode<unsigned int>(value)) {}

    /**
     * Create a ConstNode
     * @param value The value of the const node.
     */
    Temp(signed long value)
        : node(new ConstNode<signed long>(value)) {}

    /**
     * Create a ConstNode
     * @param value The value of the const node.
     */
    Temp(unsigned long value)
        : node(new ConstNode<unsigned long>(value)) {}

    /**
     * Create a ConstNode
     * @param value The value of the const node.
     */
    Temp(signed long long value)
        : node(new ConstNode<signed long long>(value)) {}

    /**
     * Create a ConstNode
     * @param value The value of the const node.
     */
    Temp(unsigned long long value)
        : node(new ConstNode<unsigned long long>(value)) {}

    /**
     * Create a ConstNode
     * @param value The value of the const node.
     */
    Temp(float value)
        : node(new ConstNode<float>(value)) {}

    /**
     * Create a ConstNode
     * @param value The value of the const node.
     */
    Temp(double value)
        : node(new ConstNode<double>(value)) {}
};


/**
 * @}
 */

void check();
void dump(std::ostream &stream, DisplayMode mode = DefaultMode);
void python_start(const std::string &file);
void python_dump(const std::string &name, const std::string &subname);
void reset();
void registerResetCallback(Callback *cb);

inline Temp
operator+(Temp l, Temp r)
{
    return NodePtr(new BinaryNode<std::plus<result_t> >(l, r));
}

inline Temp
operator-(Temp l, Temp r)
{
    return NodePtr(new BinaryNode<std::minus<result_t> >(l, r));
}

inline Temp
operator*(Temp l, Temp r)
{
    return NodePtr(new BinaryNode<std::multiplies<result_t> >(l, r));
}

inline Temp
operator/(Temp l, Temp r)
{
    return NodePtr(new BinaryNode<std::divides<result_t> >(l, r));
}

inline Temp
operator%(Temp l, Temp r)
{
    return NodePtr(new BinaryNode<std::modulus<result_t> >(l, r));
}

inline Temp
operator-(Temp l)
{
    return NodePtr(new UnaryNode<std::negate<result_t> >(l));
}

template <typename T>
inline Temp
constant(T val)
{
    return NodePtr(new ConstNode<T>(val));
}

template <typename T>
inline Temp
functor(T &val)
{
    return NodePtr(new FunctorNode<T>(val));
}

template <typename T>
inline Temp
scalar(T &val)
{
    return NodePtr(new ScalarNode<T>(val));
}

inline Temp
sum(Temp val)
{
    return NodePtr(new SumNode<std::plus<result_t> >(val));
}
extern bool PrintDescriptions;

} // namespace statistics

#endif // __STATISTICS_HH__