1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
|
# Copyright (c) 2006-2007 The Regents of The University of Michigan
# Copyright (c) 2009 Advanced Micro Devices, Inc.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Authors: Brad Beckmann
import m5
from m5.objects import *
from m5.defines import buildEnv
from m5.util import addToPath
#
# Note: the L1 Cache latency is only used by the sequencer on fast path hits
#
class L1Cache(RubyCache):
assoc = 2
latency = 3
size = 32768
#
# Note: the L2 Cache latency is not currently used
#
class L2Cache(RubyCache):
assoc = 16
latency = 15
size = 1048576
def create_system(options, phys_mem, piobus, dma_devices):
if buildEnv['PROTOCOL'] != 'MOESI_hammer':
panic("This script requires the MOESI_hammer protocol to be built.")
cpu_sequencers = []
#
# The ruby network creation expects the list of nodes in the system to be
# consistent with the NetDest list. Therefore the l1 controller nodes must be
# listed before the directory nodes and directory nodes before dma nodes, etc.
#
l1_cntrl_nodes = []
dir_cntrl_nodes = []
dma_cntrl_nodes = []
#
# Must create the individual controllers before the network to ensure the
# controller constructors are called before the network constructor
#
for i in xrange(options.num_cpus):
#
# First create the Ruby objects associated with this cpu
#
l1i_cache = L1Cache()
l1d_cache = L1Cache()
l2_cache = L2Cache()
cpu_seq = RubySequencer(icache = l1i_cache,
dcache = l1d_cache,
physMemPort = phys_mem.port,
physmem = phys_mem)
if piobus != None:
cpu_seq.pio_port = piobus.port
l1_cntrl = L1Cache_Controller(version = i,
sequencer = cpu_seq,
L1IcacheMemory = l1i_cache,
L1DcacheMemory = l1d_cache,
L2cacheMemory = l2_cache)
#
# Add controllers and sequencers to the appropriate lists
#
cpu_sequencers.append(cpu_seq)
l1_cntrl_nodes.append(l1_cntrl)
for i in xrange(options.num_dirs):
#
# Create the Ruby objects associated with the directory controller
#
mem_cntrl = RubyMemoryControl(version = i)
dir_cntrl = Directory_Controller(version = i,
directory = \
RubyDirectoryMemory(version = i),
memBuffer = mem_cntrl)
dir_cntrl_nodes.append(dir_cntrl)
for i, dma_device in enumerate(dma_devices):
#
# Create the Ruby objects associated with the dma controller
#
dma_seq = DMASequencer(version = i,
physMemPort = phys_mem.port,
physmem = phys_mem)
dma_cntrl = DMA_Controller(version = i,
dma_sequencer = dma_seq)
dma_cntrl.dma_sequencer.port = dma_device.dma
dma_cntrl_nodes.append(dma_cntrl)
all_cntrls = l1_cntrl_nodes + dir_cntrl_nodes + dma_cntrl_nodes
return (cpu_sequencers, dir_cntrl_nodes, all_cntrls)
|