1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
|
/*
* Copyright (c) 2001-2004 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __CPU_BASE_DYN_INST_CC__
#define __CPU_BASE_DYN_INST_CC__
#include <iostream>
#include <string>
#include <sstream>
#include "base/cprintf.hh"
#include "base/trace.hh"
#include "arch/alpha/faults.hh"
#include "cpu/exetrace.hh"
#include "mem/mem_req.hh"
#include "cpu/base_dyn_inst.hh"
#include "cpu/beta_cpu/alpha_impl.hh"
#include "cpu/beta_cpu/alpha_full_cpu.hh"
using namespace std;
#define NOHASH
#ifndef NOHASH
#include "base/hashmap.hh"
unsigned int MyHashFunc(const BaseDynInst *addr)
{
unsigned a = (unsigned)addr;
unsigned hash = (((a >> 14) ^ ((a >> 2) & 0xffff))) & 0x7FFFFFFF;
return hash;
}
typedef m5::hash_map<const BaseDynInst *, const BaseDynInst *, MyHashFunc> my_hash_t;
my_hash_t thishash;
#endif
template <class Impl>
BaseDynInst<Impl>::BaseDynInst(MachInst machInst, Addr inst_PC,
Addr pred_PC, InstSeqNum seq_num,
FullCPU *cpu)
: staticInst(machInst), traceData(NULL), cpu(cpu), xc(cpu->xcBase())
{
seqNum = seq_num;
PC = inst_PC;
nextPC = PC + sizeof(MachInst);
predPC = pred_PC;
initVars();
}
template <class Impl>
BaseDynInst<Impl>::BaseDynInst(StaticInstPtr<ISA> &_staticInst)
: staticInst(_staticInst), traceData(NULL)
{
initVars();
}
template <class Impl>
void
BaseDynInst<Impl>::initVars()
{
effAddr = MemReq::inval_addr;
physEffAddr = MemReq::inval_addr;
readyRegs = 0;
completed = false;
canIssue = false;
issued = false;
executed = false;
canCommit = false;
squashed = false;
squashedInIQ = false;
eaCalcDone = false;
blockingInst = false;
recoverInst = false;
// Eventually make this a parameter.
threadNumber = 0;
// Also make this a parameter, or perhaps get it from xc or cpu.
asid = 0;
// Initialize the fault to be unimplemented opcode.
fault = Unimplemented_Opcode_Fault;
++instcount;
DPRINTF(FullCPU, "DynInst: Instruction created. Instcount=%i\n",
instcount);
}
template <class Impl>
BaseDynInst<Impl>::~BaseDynInst()
{
--instcount;
DPRINTF(FullCPU, "DynInst: Instruction destroyed. Instcount=%i\n",
instcount);
}
template <class Impl>
void
BaseDynInst<Impl>::prefetch(Addr addr, unsigned flags)
{
// This is the "functional" implementation of prefetch. Not much
// happens here since prefetches don't affect the architectural
// state.
// Generate a MemReq so we can translate the effective address.
MemReqPtr req = new MemReq(addr, xc, 1, flags);
req->asid = asid;
// Prefetches never cause faults.
fault = No_Fault;
// note this is a local, not BaseDynInst::fault
Fault trans_fault = xc->translateDataReadReq(req);
if (trans_fault == No_Fault && !(req->flags & UNCACHEABLE)) {
// It's a valid address to cacheable space. Record key MemReq
// parameters so we can generate another one just like it for
// the timing access without calling translate() again (which
// might mess up the TLB).
effAddr = req->vaddr;
physEffAddr = req->paddr;
memReqFlags = req->flags;
} else {
// Bogus address (invalid or uncacheable space). Mark it by
// setting the eff_addr to InvalidAddr.
effAddr = physEffAddr = MemReq::inval_addr;
}
/**
* @todo
* Replace the disjoint functional memory with a unified one and remove
* this hack.
*/
#ifndef FULL_SYSTEM
req->paddr = req->vaddr;
#endif
if (traceData) {
traceData->setAddr(addr);
}
}
template <class Impl>
void
BaseDynInst<Impl>::writeHint(Addr addr, int size, unsigned flags)
{
// Need to create a MemReq here so we can do a translation. This
// will casue a TLB miss trap if necessary... not sure whether
// that's the best thing to do or not. We don't really need the
// MemReq otherwise, since wh64 has no functional effect.
MemReqPtr req = new MemReq(addr, xc, size, flags);
req->asid = asid;
fault = xc->translateDataWriteReq(req);
if (fault == No_Fault && !(req->flags & UNCACHEABLE)) {
// Record key MemReq parameters so we can generate another one
// just like it for the timing access without calling translate()
// again (which might mess up the TLB).
effAddr = req->vaddr;
physEffAddr = req->paddr;
memReqFlags = req->flags;
} else {
// ignore faults & accesses to uncacheable space... treat as no-op
effAddr = physEffAddr = MemReq::inval_addr;
}
storeSize = size;
storeData = 0;
}
/**
* @todo Need to find a way to get the cache block size here.
*/
template <class Impl>
Fault
BaseDynInst<Impl>::copySrcTranslate(Addr src)
{
MemReqPtr req = new MemReq(src, xc, 64);
req->asid = asid;
// translate to physical address
Fault fault = xc->translateDataReadReq(req);
if (fault == No_Fault) {
xc->copySrcAddr = src;
xc->copySrcPhysAddr = req->paddr;
} else {
xc->copySrcAddr = 0;
xc->copySrcPhysAddr = 0;
}
return fault;
}
/**
* @todo Need to find a way to get the cache block size here.
*/
template <class Impl>
Fault
BaseDynInst<Impl>::copy(Addr dest)
{
uint8_t data[64];
FunctionalMemory *mem = xc->mem;
assert(xc->copySrcPhysAddr || xc->misspeculating());
MemReqPtr req = new MemReq(dest, xc, 64);
req->asid = asid;
// translate to physical address
Fault fault = xc->translateDataWriteReq(req);
if (fault == No_Fault) {
Addr dest_addr = req->paddr;
// Need to read straight from memory since we have more than 8 bytes.
req->paddr = xc->copySrcPhysAddr;
mem->read(req, data);
req->paddr = dest_addr;
mem->write(req, data);
}
return fault;
}
template <class Impl>
void
BaseDynInst<Impl>::dump()
{
cprintf("T%d : %#08d `", threadNumber, PC);
cout << staticInst->disassemble(PC);
cprintf("'\n");
}
template <class Impl>
void
BaseDynInst<Impl>::dump(std::string &outstring)
{
std::ostringstream s;
s << "T" << threadNumber << " : 0x" << PC << " "
<< staticInst->disassemble(PC);
outstring = s.str();
}
#if 0
template <class Impl>
Fault
BaseDynInst<Impl>::mem_access(mem_cmd cmd, Addr addr, void *p, int nbytes)
{
Fault fault;
// check alignments, even speculative this test should always pass
if ((nbytes & nbytes - 1) != 0 || (addr & nbytes - 1) != 0) {
for (int i = 0; i < nbytes; i++)
((char *) p)[i] = 0;
// I added the following because according to the comment above,
// we should never get here. The comment lies
#if 0
panic("unaligned access. Cycle = %n", curTick);
#endif
return No_Fault;
}
MemReqPtr req = new MemReq(addr, thread, nbytes);
switch(cmd) {
case Read:
fault = spec_mem->read(req, (uint8_t *)p);
break;
case Write:
fault = spec_mem->write(req, (uint8_t *)p);
if (fault != No_Fault)
break;
specMemWrite = true;
storeSize = nbytes;
switch(nbytes) {
case sizeof(uint8_t):
*(uint8_t)&storeData = (uint8_t *)p;
break;
case sizeof(uint16_t):
*(uint16_t)&storeData = (uint16_t *)p;
break;
case sizeof(uint32_t):
*(uint32_t)&storeData = (uint32_t *)p;
break;
case sizeof(uint64_t):
*(uint64_t)&storeData = (uint64_t *)p;
break;
}
break;
default:
fault = Machine_Check_Fault;
break;
}
trace_mem(fault, cmd, addr, p, nbytes);
return fault;
}
#endif
template <class Impl>
bool
BaseDynInst<Impl>::eaSrcsReady()
{
// For now I am assuming that src registers 1..n-1 are the ones that the
// EA calc depends on. (i.e. src reg 0 is the source of the data to be
// stored)
for (int i = 1; i < numSrcRegs(); ++i)
{
if (!_readySrcRegIdx[i])
return false;
}
return true;
}
// Forward declaration
template class BaseDynInst<AlphaSimpleImpl>;
template <>
int
BaseDynInst<AlphaSimpleImpl>::instcount = 0;
#endif // __CPU_BASE_DYN_INST_CC__
|