summaryrefslogtreecommitdiff
path: root/cpu/beta_cpu/alpha_full_cpu.cc
blob: 88041814633371ff8844851e3c3c886d6609affb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911

#include "base/cprintf.hh"
#include "base/statistics.hh"
#include "base/timebuf.hh"
#include "cpu/full_cpu/dd_queue.hh"
#include "cpu/full_cpu/full_cpu.hh"
#include "cpu/full_cpu/rob_station.hh"
#include "mem/cache/cache.hh" // for dynamic cast
#include "mem/mem_interface.hh"
#include "sim/builder.hh"
#include "sim/sim_events.hh"
#include "sim/stats.hh"

#include "cpu/beta_cpu/alpha_full_cpu.hh"
#include "cpu/beta_cpu/alpha_params.hh"
#include "cpu/beta_cpu/comm.hh"

AlphaFullCPU::AlphaFullCPU(Params &params)
    : FullBetaCPU<AlphaSimpleImpl>(params)
{

    fetch.setCPU(this);
    decode.setCPU(this);
    rename.setCPU(this);
    iew.setCPU(this);
    commit.setCPU(this);

    rob.setCPU(this);
}

#ifndef FULL_SYSTEM

void
AlphaFullCPU::syscall()
{
    DPRINTF(FullCPU, "AlphaFullCPU: Syscall() called.\n\n");

    squashStages();

    // Copy over all important state to xc once all the unrolling is done.
    copyToXC();

    process->syscall(xc);

    // Copy over all important state back to normal.
    copyFromXC();
}

// This is not a pretty function, and should only be used if it is necessary
// to fake having everything squash all at once (ie for non-full system
// syscalls).
void
AlphaFullCPU::squashStages()
{
    InstSeqNum rob_head = rob.readHeadSeqNum();

    // Now hack the time buffer to put this sequence number in the places
    // where the stages might read it.
    for (int i = 0; i < 10; ++i)
    {
        timeBuffer.access(-i)->commitInfo.doneSeqNum = rob_head;
    }

    fetch.squash(rob.readHeadNextPC());
    fetchQueue.advance();

    decode.squash();
    decodeQueue.advance();

    rename.squash();
    renameQueue.advance();
    renameQueue.advance();

    iew.squash();
    iewQueue.advance();
    iewQueue.advance();

    rob.squash(rob_head);
    commit.setSquashing();
}

#endif // FULL_SYSTEM

void
AlphaFullCPU::copyToXC()
{
    PhysRegIndex renamed_reg;

    // First loop through the integer registers.
    for (int i = 0; i < AlphaISA::NumIntRegs; ++i)
    {
        renamed_reg = renameMap.lookup(i);
        xc->regs.intRegFile[i] = regFile.intRegFile[renamed_reg];
        DPRINTF(FullCPU, "FullCPU: Copying register %i, has data %lli.\n",
                renamed_reg, regFile.intRegFile[renamed_reg]);
    }

    // Then loop through the floating point registers.
    for (int i = 0; i < AlphaISA::NumFloatRegs; ++i)
    {
        renamed_reg = renameMap.lookup(i + AlphaISA::FP_Base_DepTag);
        xc->regs.floatRegFile.d[i] = regFile.floatRegFile[renamed_reg].d;
        xc->regs.floatRegFile.q[i] = regFile.floatRegFile[renamed_reg].q;
    }

    xc->regs.miscRegs.fpcr = regFile.miscRegs.fpcr;
    xc->regs.miscRegs.uniq = regFile.miscRegs.uniq;
    xc->regs.miscRegs.lock_flag = regFile.miscRegs.lock_flag;
    xc->regs.miscRegs.lock_addr = regFile.miscRegs.lock_addr;

    xc->regs.pc = rob.readHeadPC();
    xc->regs.npc = xc->regs.pc+4;

    xc->func_exe_inst = funcExeInst;
}

// This function will probably mess things up unless the ROB is empty and
// there are no instructions in the pipeline.
void
AlphaFullCPU::copyFromXC()
{
    PhysRegIndex renamed_reg;

    // First loop through the integer registers.
    for (int i = 0; i < AlphaISA::NumIntRegs; ++i)
    {
        renamed_reg = renameMap.lookup(i);

        DPRINTF(FullCPU, "FullCPU: Copying over register %i, had data %lli, "
                "now has data %lli.\n",
                renamed_reg, regFile.intRegFile[renamed_reg],
                xc->regs.intRegFile[i]);

        regFile.intRegFile[renamed_reg] = xc->regs.intRegFile[i];
    }

    // Then loop through the floating point registers.
    for (int i = 0; i < AlphaISA::NumFloatRegs; ++i)
    {
        renamed_reg = renameMap.lookup(i + AlphaISA::FP_Base_DepTag);
        regFile.floatRegFile[renamed_reg].d = xc->regs.floatRegFile.d[i];
        regFile.floatRegFile[renamed_reg].q = xc->regs.floatRegFile.q[i] ;
    }

    // Then loop through the misc registers.
    regFile.miscRegs.fpcr = xc->regs.miscRegs.fpcr;
    regFile.miscRegs.uniq = xc->regs.miscRegs.uniq;
    regFile.miscRegs.lock_flag = xc->regs.miscRegs.lock_flag;
    regFile.miscRegs.lock_addr = xc->regs.miscRegs.lock_addr;

    // Then finally set the PC and the next PC.
//    regFile.pc = xc->regs.pc;
//    regFile.npc = xc->regs.npc;

    funcExeInst = xc->func_exe_inst;
}

#ifdef FULL_SYSTEM

uint64_t *
AlphaFullCPU::getIpr()
{
    return regs.ipr;
}

uint64_t
AlphaFullCPU::readIpr(int idx, Fault &fault)
{
    uint64_t *ipr = getIpr();
    uint64_t retval = 0;	// return value, default 0

    switch (idx) {
      case AlphaISA::IPR_PALtemp0:
      case AlphaISA::IPR_PALtemp1:
      case AlphaISA::IPR_PALtemp2:
      case AlphaISA::IPR_PALtemp3:
      case AlphaISA::IPR_PALtemp4:
      case AlphaISA::IPR_PALtemp5:
      case AlphaISA::IPR_PALtemp6:
      case AlphaISA::IPR_PALtemp7:
      case AlphaISA::IPR_PALtemp8:
      case AlphaISA::IPR_PALtemp9:
      case AlphaISA::IPR_PALtemp10:
      case AlphaISA::IPR_PALtemp11:
      case AlphaISA::IPR_PALtemp12:
      case AlphaISA::IPR_PALtemp13:
      case AlphaISA::IPR_PALtemp14:
      case AlphaISA::IPR_PALtemp15:
      case AlphaISA::IPR_PALtemp16:
      case AlphaISA::IPR_PALtemp17:
      case AlphaISA::IPR_PALtemp18:
      case AlphaISA::IPR_PALtemp19:
      case AlphaISA::IPR_PALtemp20:
      case AlphaISA::IPR_PALtemp21:
      case AlphaISA::IPR_PALtemp22:
      case AlphaISA::IPR_PALtemp23:
      case AlphaISA::IPR_PAL_BASE:

      case AlphaISA::IPR_IVPTBR:
      case AlphaISA::IPR_DC_MODE:
      case AlphaISA::IPR_MAF_MODE:
      case AlphaISA::IPR_ISR:
      case AlphaISA::IPR_EXC_ADDR:
      case AlphaISA::IPR_IC_PERR_STAT:
      case AlphaISA::IPR_DC_PERR_STAT:
      case AlphaISA::IPR_MCSR:
      case AlphaISA::IPR_ASTRR:
      case AlphaISA::IPR_ASTER:
      case AlphaISA::IPR_SIRR:
      case AlphaISA::IPR_ICSR:
      case AlphaISA::IPR_ICM:
      case AlphaISA::IPR_DTB_CM:
      case AlphaISA::IPR_IPLR:
      case AlphaISA::IPR_INTID:
      case AlphaISA::IPR_PMCTR:
        // no side-effect
        retval = ipr[idx];
        break;

      case AlphaISA::IPR_CC:
        retval |= ipr[idx] & ULL(0xffffffff00000000);
        retval |= curTick  & ULL(0x00000000ffffffff);
        break;

      case AlphaISA::IPR_VA:
        retval = ipr[idx];
        break;

      case AlphaISA::IPR_VA_FORM:
      case AlphaISA::IPR_MM_STAT:
      case AlphaISA::IPR_IFAULT_VA_FORM:
      case AlphaISA::IPR_EXC_MASK:
      case AlphaISA::IPR_EXC_SUM:
        retval = ipr[idx];
        break;

      case AlphaISA::IPR_DTB_PTE:
        {
            AlphaISA::PTE &pte = dtb->index(!misspeculating());

            retval |= ((u_int64_t)pte.ppn & ULL(0x7ffffff)) << 32;
            retval |= ((u_int64_t)pte.xre & ULL(0xf)) << 8;
            retval |= ((u_int64_t)pte.xwe & ULL(0xf)) << 12;
            retval |= ((u_int64_t)pte.fonr & ULL(0x1)) << 1;
            retval |= ((u_int64_t)pte.fonw & ULL(0x1))<< 2;
            retval |= ((u_int64_t)pte.asma & ULL(0x1)) << 4;
            retval |= ((u_int64_t)pte.asn & ULL(0x7f)) << 57;
        }
        break;

        // write only registers
      case AlphaISA::IPR_HWINT_CLR:
      case AlphaISA::IPR_SL_XMIT:
      case AlphaISA::IPR_DC_FLUSH:
      case AlphaISA::IPR_IC_FLUSH:
      case AlphaISA::IPR_ALT_MODE:
      case AlphaISA::IPR_DTB_IA:
      case AlphaISA::IPR_DTB_IAP:
      case AlphaISA::IPR_ITB_IA:
      case AlphaISA::IPR_ITB_IAP:
        fault = Unimplemented_Opcode_Fault;
        break;

      default:
        // invalid IPR
        fault = Unimplemented_Opcode_Fault;
        break;
    }

    return retval;
}

Fault
AlphaFullCPU::setIpr(int idx, uint64_t val)
{
    uint64_t *ipr = getIpr();
    uint64_t old;

    if (misspeculating())
        return No_Fault;

    switch (idx) {
      case AlphaISA::IPR_PALtemp0:
      case AlphaISA::IPR_PALtemp1:
      case AlphaISA::IPR_PALtemp2:
      case AlphaISA::IPR_PALtemp3:
      case AlphaISA::IPR_PALtemp4:
      case AlphaISA::IPR_PALtemp5:
      case AlphaISA::IPR_PALtemp6:
      case AlphaISA::IPR_PALtemp7:
      case AlphaISA::IPR_PALtemp8:
      case AlphaISA::IPR_PALtemp9:
      case AlphaISA::IPR_PALtemp10:
      case AlphaISA::IPR_PALtemp11:
      case AlphaISA::IPR_PALtemp12:
      case AlphaISA::IPR_PALtemp13:
      case AlphaISA::IPR_PALtemp14:
      case AlphaISA::IPR_PALtemp15:
      case AlphaISA::IPR_PALtemp16:
      case AlphaISA::IPR_PALtemp17:
      case AlphaISA::IPR_PALtemp18:
      case AlphaISA::IPR_PALtemp19:
      case AlphaISA::IPR_PALtemp20:
      case AlphaISA::IPR_PALtemp21:
      case AlphaISA::IPR_PALtemp22:
      case AlphaISA::IPR_PAL_BASE:
      case AlphaISA::IPR_IC_PERR_STAT:
      case AlphaISA::IPR_DC_PERR_STAT:
      case AlphaISA::IPR_PMCTR:
        // write entire quad w/ no side-effect
        ipr[idx] = val;
        break;

      case AlphaISA::IPR_CC_CTL:
        // This IPR resets the cycle counter.  We assume this only
        // happens once... let's verify that.
        assert(ipr[idx] == 0);
        ipr[idx] = 1;
        break;

      case AlphaISA::IPR_CC:
        // This IPR only writes the upper 64 bits.  It's ok to write
        // all 64 here since we mask out the lower 32 in rpcc (see
        // isa_desc).
        ipr[idx] = val;
        break;

      case AlphaISA::IPR_PALtemp23:
        // write entire quad w/ no side-effect
        old = ipr[idx];
        ipr[idx] = val;
        kernelStats.context(old, val);
        break;

      case AlphaISA::IPR_DTB_PTE:
        // write entire quad w/ no side-effect, tag is forthcoming
        ipr[idx] = val;
        break;

      case AlphaISA::IPR_EXC_ADDR:
        // second least significant bit in PC is always zero
        ipr[idx] = val & ~2;
        break;

      case AlphaISA::IPR_ASTRR:
      case AlphaISA::IPR_ASTER:
        // only write least significant four bits - privilege mask
        ipr[idx] = val & 0xf;
        break;

      case AlphaISA::IPR_IPLR:
#ifdef DEBUG
        if (break_ipl != -1 && break_ipl == (val & 0x1f))
            debug_break();
#endif

        // only write least significant five bits - interrupt level
        ipr[idx] = val & 0x1f;
        kernelStats.swpipl(ipr[idx]);
        break;

      case AlphaISA::IPR_DTB_CM:
        kernelStats.mode((val & 0x18) != 0);

      case AlphaISA::IPR_ICM:
        // only write two mode bits - processor mode
        ipr[idx] = val & 0x18;
        break;

      case AlphaISA::IPR_ALT_MODE:
        // only write two mode bits - processor mode
        ipr[idx] = val & 0x18;
        break;

      case AlphaISA::IPR_MCSR:
        // more here after optimization...
        ipr[idx] = val;
        break;

      case AlphaISA::IPR_SIRR:
        // only write software interrupt mask
        ipr[idx] = val & 0x7fff0;
        break;

      case AlphaISA::IPR_ICSR:
        ipr[idx] = val & ULL(0xffffff0300);
        break;

      case AlphaISA::IPR_IVPTBR:
      case AlphaISA::IPR_MVPTBR:
        ipr[idx] = val & ULL(0xffffffffc0000000);
        break;

      case AlphaISA::IPR_DC_TEST_CTL:
        ipr[idx] = val & 0x1ffb;
        break;

      case AlphaISA::IPR_DC_MODE:
      case AlphaISA::IPR_MAF_MODE:
        ipr[idx] = val & 0x3f;
        break;

      case AlphaISA::IPR_ITB_ASN:
        ipr[idx] = val & 0x7f0;
        break;

      case AlphaISA::IPR_DTB_ASN:
        ipr[idx] = val & ULL(0xfe00000000000000);
        break;

      case AlphaISA::IPR_EXC_SUM:
      case AlphaISA::IPR_EXC_MASK:
        // any write to this register clears it
        ipr[idx] = 0;
        break;

      case AlphaISA::IPR_INTID:
      case AlphaISA::IPR_SL_RCV:
      case AlphaISA::IPR_MM_STAT:
      case AlphaISA::IPR_ITB_PTE_TEMP:
      case AlphaISA::IPR_DTB_PTE_TEMP:
        // read-only registers
        return Unimplemented_Opcode_Fault;

      case AlphaISA::IPR_HWINT_CLR:
      case AlphaISA::IPR_SL_XMIT:
      case AlphaISA::IPR_DC_FLUSH:
      case AlphaISA::IPR_IC_FLUSH:
        // the following are write only
        ipr[idx] = val;
        break;

      case AlphaISA::IPR_DTB_IA:
        // really a control write
        ipr[idx] = 0;

        dtb->flushAll();
        break;

      case AlphaISA::IPR_DTB_IAP:
        // really a control write
        ipr[idx] = 0;

        dtb->flushProcesses();
        break;

      case AlphaISA::IPR_DTB_IS:
        // really a control write
        ipr[idx] = val;

        dtb->flushAddr(val, DTB_ASN_ASN(ipr[AlphaISA::IPR_DTB_ASN]));
        break;

      case AlphaISA::IPR_DTB_TAG: {
          struct AlphaISA::PTE pte;

          // FIXME: granularity hints NYI...
          if (DTB_PTE_GH(ipr[AlphaISA::IPR_DTB_PTE]) != 0)
              panic("PTE GH field != 0");

          // write entire quad
          ipr[idx] = val;

          // construct PTE for new entry
          pte.ppn = DTB_PTE_PPN(ipr[AlphaISA::IPR_DTB_PTE]);
          pte.xre = DTB_PTE_XRE(ipr[AlphaISA::IPR_DTB_PTE]);
          pte.xwe = DTB_PTE_XWE(ipr[AlphaISA::IPR_DTB_PTE]);
          pte.fonr = DTB_PTE_FONR(ipr[AlphaISA::IPR_DTB_PTE]);
          pte.fonw = DTB_PTE_FONW(ipr[AlphaISA::IPR_DTB_PTE]);
          pte.asma = DTB_PTE_ASMA(ipr[AlphaISA::IPR_DTB_PTE]);
          pte.asn = DTB_ASN_ASN(ipr[AlphaISA::IPR_DTB_ASN]);

          // insert new TAG/PTE value into data TLB
          dtb->insert(val, pte);
      }
        break;

      case AlphaISA::IPR_ITB_PTE: {
          struct AlphaISA::PTE pte;

          // FIXME: granularity hints NYI...
          if (ITB_PTE_GH(val) != 0)
              panic("PTE GH field != 0");

          // write entire quad
          ipr[idx] = val;

          // construct PTE for new entry
          pte.ppn = ITB_PTE_PPN(val);
          pte.xre = ITB_PTE_XRE(val);
          pte.xwe = 0;
          pte.fonr = ITB_PTE_FONR(val);
          pte.fonw = ITB_PTE_FONW(val);
          pte.asma = ITB_PTE_ASMA(val);
          pte.asn = ITB_ASN_ASN(ipr[AlphaISA::IPR_ITB_ASN]);

          // insert new TAG/PTE value into data TLB
          itb->insert(ipr[AlphaISA::IPR_ITB_TAG], pte);
      }
        break;

      case AlphaISA::IPR_ITB_IA:
        // really a control write
        ipr[idx] = 0;

        itb->flushAll();
        break;

      case AlphaISA::IPR_ITB_IAP:
        // really a control write
        ipr[idx] = 0;

        itb->flushProcesses();
        break;

      case AlphaISA::IPR_ITB_IS:
        // really a control write
        ipr[idx] = val;

        itb->flushAddr(val, ITB_ASN_ASN(ipr[AlphaISA::IPR_ITB_ASN]));
        break;

      default:
        // invalid IPR
        return Unimplemented_Opcode_Fault;
    }

    // no error...
    return No_Fault;

}

int
AlphaFullCPU::readIntrFlag()
{
    return regs.intrflag;
}

void
AlphaFullCPU::setIntrFlag(int val)
{
    regs.intrflag = val;
}

// Maybe have this send back from IEW stage to squash and update PC.
Fault
AlphaFullCPU::hwrei()
{
    uint64_t *ipr = getIpr();

    if (!PC_PAL(regs.pc))
        return Unimplemented_Opcode_Fault;

    setNextPC(ipr[AlphaISA::IPR_EXC_ADDR]);

    if (!misspeculating()) {
        kernelStats.hwrei();

        if ((ipr[AlphaISA::IPR_EXC_ADDR] & 1) == 0)
            AlphaISA::swap_palshadow(&regs, false);

        AlphaISA::check_interrupts = true;
    }

    // FIXME: XXX check for interrupts? XXX
    return No_Fault;
}

bool
AlphaFullCPU::inPalMode()
{
    return PC_PAL(readPC());
}

bool
AlphaFullCPU::simPalCheck(int palFunc)
{
    kernelStats.callpal(palFunc);

    switch (palFunc) {
      case PAL::halt:
        halt();
        if (--System::numSystemsRunning == 0)
            new SimExitEvent("all cpus halted");
        break;

      case PAL::bpt:
      case PAL::bugchk:
        if (system->breakpoint())
            return false;
        break;
    }

    return true;
}

// Probably shouldn't be able to switch to the trap handler as quickly as
// this.  Also needs to get the exception restart address from the commit
// stage.
void
AlphaFullCPU::trap(Fault fault)
{
    uint64_t PC = commit.readPC();

    DPRINTF(Fault, "Fault %s\n", FaultName(fault));
    Stats::recordEvent(csprintf("Fault %s", FaultName(fault)));

    assert(!misspeculating());
    kernelStats.fault(fault);

    if (fault == Arithmetic_Fault)
        panic("Arithmetic traps are unimplemented!");

    AlphaISA::InternalProcReg *ipr = getIpr();

    // exception restart address - Get the commit PC
    if (fault != Interrupt_Fault || !PC_PAL(PC))
        ipr[AlphaISA::IPR_EXC_ADDR] = PC;

    if (fault == Pal_Fault || fault == Arithmetic_Fault /* ||
        fault == Interrupt_Fault && !PC_PAL(regs.pc) */) {
        // traps...  skip faulting instruction
        ipr[AlphaISA::IPR_EXC_ADDR] += 4;
    }

    if (!PC_PAL(PC))
        AlphaISA::swap_palshadow(&regs, true);

    setPC( ipr[AlphaISA::IPR_PAL_BASE] + AlphaISA::fault_addr[fault] );
    setNextPC(PC + sizeof(MachInst));
}

void
AlphaFullCPU::processInterrupts()
{
    // Check for interrupts here.  For now can copy the code that exists
    // within isa_fullsys_traits.hh.
}

// swap_palshadow swaps in the values of the shadow registers and
// swaps them with the values of the physical registers that map to the
// same logical index.
void
AlphaFullCPU::swap_palshadow(RegFile *regs, bool use_shadow)
{
    if (palShadowEnabled == use_shadow)
        panic("swap_palshadow: wrong PAL shadow state");

    palShadowEnabled = use_shadow;

    // Will have to lookup in rename map to get physical registers, then
    // swap.
    for (int i = 0; i < AlphaISA::NumIntRegs; i++) {
        if (reg_redir[i]) {
            AlphaISA::IntReg temp = regs->intRegFile[i];
            regs->intRegFile[i] = regs->palregs[i];
            regs->palregs[i] = temp;
        }
    }
}

#endif // FULL_SYSTEM

BEGIN_DECLARE_SIM_OBJECT_PARAMS(AlphaFullCPU)

    Param<int> numThreads;

#ifdef FULL_SYSTEM
SimObjectParam<System *> system;
SimObjectParam<AlphaITB *> itb;
SimObjectParam<AlphaDTB *> dtb;
Param<int> mult;
#else
SimObjectVectorParam<Process *> workload;
SimObjectParam<Process *> process;
Param<short> asid;
#endif // FULL_SYSTEM
SimObjectParam<FunctionalMemory *> mem;

Param<Counter> max_insts_any_thread;
Param<Counter> max_insts_all_threads;
Param<Counter> max_loads_any_thread;
Param<Counter> max_loads_all_threads;

SimObjectParam<BaseCache *> icache;
SimObjectParam<BaseCache *> dcache;

Param<unsigned> decodeToFetchDelay;
Param<unsigned> renameToFetchDelay;
Param<unsigned> iewToFetchDelay;
Param<unsigned> commitToFetchDelay;
Param<unsigned> fetchWidth;

Param<unsigned> renameToDecodeDelay;
Param<unsigned> iewToDecodeDelay;
Param<unsigned> commitToDecodeDelay;
Param<unsigned> fetchToDecodeDelay;
Param<unsigned> decodeWidth;

Param<unsigned> iewToRenameDelay;
Param<unsigned> commitToRenameDelay;
Param<unsigned> decodeToRenameDelay;
Param<unsigned> renameWidth;

Param<unsigned> commitToIEWDelay;
Param<unsigned> renameToIEWDelay;
Param<unsigned> issueToExecuteDelay;
Param<unsigned> issueWidth;
Param<unsigned> executeWidth;
Param<unsigned> executeIntWidth;
Param<unsigned> executeFloatWidth;

Param<unsigned> iewToCommitDelay;
Param<unsigned> renameToROBDelay;
Param<unsigned> commitWidth;
Param<unsigned> squashWidth;

Param<unsigned> numPhysIntRegs;
Param<unsigned> numPhysFloatRegs;
Param<unsigned> numIQEntries;
Param<unsigned> numROBEntries;

Param<bool> defReg;

END_DECLARE_SIM_OBJECT_PARAMS(AlphaFullCPU)

BEGIN_INIT_SIM_OBJECT_PARAMS(AlphaFullCPU)

    INIT_PARAM(numThreads, "number of HW thread contexts"),

#ifdef FULL_SYSTEM
    INIT_PARAM(system, "System object"),
    INIT_PARAM(itb, "Instruction translation buffer"),
    INIT_PARAM(dtb, "Data translation buffer"),
    INIT_PARAM_DFLT(mult, "System clock multiplier", 1),
#else
    INIT_PARAM(workload, "Processes to run"),
    INIT_PARAM_DFLT(process, "Process to run", NULL),
    INIT_PARAM(asid, "Address space ID"),
#endif // FULL_SYSTEM

    INIT_PARAM_DFLT(mem, "Memory", NULL),

    INIT_PARAM_DFLT(max_insts_any_thread,
                    "Terminate when any thread reaches this inst count",
                    0),
    INIT_PARAM_DFLT(max_insts_all_threads,
                    "Terminate when all threads have reached"
                    "this inst count",
                    0),
    INIT_PARAM_DFLT(max_loads_any_thread,
                    "Terminate when any thread reaches this load count",
                    0),
    INIT_PARAM_DFLT(max_loads_all_threads,
                    "Terminate when all threads have reached this load"
                    "count",
                    0),

    INIT_PARAM_DFLT(icache, "L1 instruction cache", NULL),
    INIT_PARAM_DFLT(dcache, "L1 data cache", NULL),

    INIT_PARAM(decodeToFetchDelay, "Decode to fetch delay"),
    INIT_PARAM(renameToFetchDelay, "Rename to fetch delay"),
    INIT_PARAM(iewToFetchDelay, "Issue/Execute/Writeback to fetch"
               "delay"),
    INIT_PARAM(commitToFetchDelay, "Commit to fetch delay"),
    INIT_PARAM(fetchWidth, "Fetch width"),

    INIT_PARAM(renameToDecodeDelay, "Rename to decode delay"),
    INIT_PARAM(iewToDecodeDelay, "Issue/Execute/Writeback to decode"
               "delay"),
    INIT_PARAM(commitToDecodeDelay, "Commit to decode delay"),
    INIT_PARAM(fetchToDecodeDelay, "Fetch to decode delay"),
    INIT_PARAM(decodeWidth, "Decode width"),

    INIT_PARAM(iewToRenameDelay, "Issue/Execute/Writeback to rename"
               "delay"),
    INIT_PARAM(commitToRenameDelay, "Commit to rename delay"),
    INIT_PARAM(decodeToRenameDelay, "Decode to rename delay"),
    INIT_PARAM(renameWidth, "Rename width"),

    INIT_PARAM(commitToIEWDelay, "Commit to "
               "Issue/Execute/Writeback delay"),
    INIT_PARAM(renameToIEWDelay, "Rename to "
               "Issue/Execute/Writeback delay"),
    INIT_PARAM(issueToExecuteDelay, "Issue to execute delay (internal"
               "to the IEW stage)"),
    INIT_PARAM(issueWidth, "Issue width"),
    INIT_PARAM(executeWidth, "Execute width"),
    INIT_PARAM(executeIntWidth, "Integer execute width"),
    INIT_PARAM(executeFloatWidth, "Floating point execute width"),

    INIT_PARAM(iewToCommitDelay, "Issue/Execute/Writeback to commit "
               "delay"),
    INIT_PARAM(renameToROBDelay, "Rename to reorder buffer delay"),
    INIT_PARAM(commitWidth, "Commit width"),
    INIT_PARAM(squashWidth, "Squash width"),

    INIT_PARAM(numPhysIntRegs, "Number of physical integer registers"),
    INIT_PARAM(numPhysFloatRegs, "Number of physical floating point "
               "registers"),
    INIT_PARAM(numIQEntries, "Number of instruction queue entries"),
    INIT_PARAM(numROBEntries, "Number of reorder buffer entries"),

    INIT_PARAM(defReg, "Defer registration")

END_INIT_SIM_OBJECT_PARAMS(AlphaFullCPU)

CREATE_SIM_OBJECT(AlphaFullCPU)
{
    AlphaFullCPU *cpu;

#ifdef FULL_SYSTEM
    if (mult != 1)
        panic("Processor clock multiplier must be 1?\n");

    // Full-system only supports a single thread for the moment.
    int actual_num_threads = 1;
#else
    // In non-full-system mode, we infer the number of threads from
    // the workload if it's not explicitly specified.
    int actual_num_threads =
        numThreads.isValid() ? numThreads : workload.size();

    if (workload.size() == 0) {
        fatal("Must specify at least one workload!");
    }

    Process *actual_process;

    if (process == NULL) {
        actual_process = workload[0];
    } else {
        actual_process = process;
    }

#endif

    AlphaSimpleParams params;

    params.name = getInstanceName();
    params.numberOfThreads = actual_num_threads;

#ifdef FULL_SYSTEM
    params._system = system;
    params.itb = itb;
    params.dtb = dtb;
    params.freq = ticksPerSecond * mult;
#else
    params.workload = workload;
    params.process = actual_process;
    params.asid = asid;
#endif // FULL_SYSTEM

    params.mem = mem;

    params.maxInstsAnyThread = max_insts_any_thread;
    params.maxInstsAllThreads = max_insts_all_threads;
    params.maxLoadsAnyThread = max_loads_any_thread;
    params.maxLoadsAllThreads = max_loads_all_threads;

    //
    // Caches
    //
    params.icacheInterface = icache ? icache->getInterface() : NULL;
    params.dcacheInterface = dcache ? dcache->getInterface() : NULL;

    params.decodeToFetchDelay = decodeToFetchDelay;
    params.renameToFetchDelay = renameToFetchDelay;
    params.iewToFetchDelay = iewToFetchDelay;
    params.commitToFetchDelay = commitToFetchDelay;
    params.fetchWidth = fetchWidth;

    params.renameToDecodeDelay = renameToDecodeDelay;
    params.iewToDecodeDelay = iewToDecodeDelay;
    params.commitToDecodeDelay = commitToDecodeDelay;
    params.fetchToDecodeDelay = fetchToDecodeDelay;
    params.decodeWidth = decodeWidth;

    params.iewToRenameDelay = iewToRenameDelay;
    params.commitToRenameDelay = commitToRenameDelay;
    params.decodeToRenameDelay = decodeToRenameDelay;
    params.renameWidth = renameWidth;

    params.commitToIEWDelay = commitToIEWDelay;
    params.renameToIEWDelay = renameToIEWDelay;
    params.issueToExecuteDelay = issueToExecuteDelay;
    params.issueWidth = issueWidth;
    params.executeWidth = executeWidth;
    params.executeIntWidth = executeIntWidth;
    params.executeFloatWidth = executeFloatWidth;

    params.iewToCommitDelay = iewToCommitDelay;
    params.renameToROBDelay = renameToROBDelay;
    params.commitWidth = commitWidth;
    params.squashWidth = squashWidth;

    params.numPhysIntRegs = numPhysIntRegs;
    params.numPhysFloatRegs = numPhysFloatRegs;
    params.numIQEntries = numIQEntries;
    params.numROBEntries = numROBEntries;

    params.defReg = defReg;

    cpu = new AlphaFullCPU(params);

    return cpu;
}

REGISTER_SIM_OBJECT("AlphaFullCPU", AlphaFullCPU)