summaryrefslogtreecommitdiff
path: root/cpu/beta_cpu/fetch_impl.hh
blob: 918d2dad27515f28acc34fa03dd198b342bcbcc2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
// Todo: Rewrite this.  Add in branch prediction.  Fix up if squashing comes
// from decode; only the correct instructions should be killed.  This will
// probably require changing the CPU's instList functions to take a seqNum
// instead of a dyninst.  With probe path, should be able to specify
// size of data to fetch.  Will be able to get full cache line.

// Remove this later.
#define OPCODE(X)                       (X >> 26) & 0x3f

#include "cpu/exetrace.hh"
#include "mem/base_mem.hh"
#include "mem/mem_interface.hh"
#include "mem/mem_req.hh"
#include "cpu/beta_cpu/fetch.hh"

#include "sim/universe.hh"

template<class Impl>
SimpleFetch<Impl>::CacheCompletionEvent
::CacheCompletionEvent(SimpleFetch *_fetch)
    : Event(&mainEventQueue),
      fetch(_fetch)
{
}

template<class Impl>
void
SimpleFetch<Impl>::CacheCompletionEvent::process()
{
    fetch->processCacheCompletion();
}

template<class Impl>
const char *
SimpleFetch<Impl>::CacheCompletionEvent::description()
{
    return "SimpleFetch cache completion event";
}

template<class Impl>
SimpleFetch<Impl>::SimpleFetch(Params &params)
    : cacheCompletionEvent(this),
      icacheInterface(params.icacheInterface),
      decodeToFetchDelay(params.decodeToFetchDelay),
      renameToFetchDelay(params.renameToFetchDelay),
      iewToFetchDelay(params.iewToFetchDelay),
      commitToFetchDelay(params.commitToFetchDelay),
      fetchWidth(params.fetchWidth),
      inst(0)
{
    // Set status to idle.
    _status = Idle;

    // Create a new memory request.
    memReq = new MemReq();
    // Not sure of this parameter.  I think it should be based on the
    // thread number.
#ifndef FULL_SYSTEM
    memReq->asid = params.asid;
#else
    memReq->asid = 0;
#endif // FULL_SYSTEM
    memReq->data = new uint8_t[64];

    // Size of cache block.
    blkSize = icacheInterface ? icacheInterface->getBlockSize() : 64;

    // Create mask to get rid of offset bits.
    cacheBlockMask = ~((int)log2(blkSize) - 1);

    // Get the size of an instruction.
    instSize = sizeof(MachInst);
}

template<class Impl>
void
SimpleFetch<Impl>::setCPU(FullCPU *cpu_ptr)
{
    DPRINTF(Fetch, "Fetch: Setting the CPU pointer.\n");
    cpu = cpu_ptr;
    // This line will be removed eventually.
    memReq->xc = cpu->xcBase();
}

template<class Impl>
void
SimpleFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
{
    DPRINTF(Fetch, "Fetch: Setting the time buffer pointer.\n");
    timeBuffer = time_buffer;

    // Create wires to get information from proper places in time buffer.
    fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
    fromRename = timeBuffer->getWire(-renameToFetchDelay);
    fromIEW = timeBuffer->getWire(-iewToFetchDelay);
    fromCommit = timeBuffer->getWire(-commitToFetchDelay);
}

template<class Impl>
void
SimpleFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
{
    DPRINTF(Fetch, "Fetch: Setting the fetch queue pointer.\n");
    fetchQueue = fq_ptr;

    // Create wire to write information to proper place in fetch queue.
    toDecode = fetchQueue->getWire(0);
}

template<class Impl>
void
SimpleFetch<Impl>::processCacheCompletion()
{
    DPRINTF(Fetch, "Fetch: Waking up from cache miss.\n");

    // Only change the status if it's still waiting on the icache access
    // to return.
    // Can keep track of how many cache accesses go unused due to
    // misspeculation here.
    // How to handle an outstanding miss which gets cancelled due to squash,
    // then a new icache miss gets scheduled?
    if (_status == IcacheMissStall)
        _status = IcacheMissComplete;
}

// Note that in the SimpleFetch<>, will most likely have to provide the
// template parameters to BP and BTB.
template<class Impl>
void
SimpleFetch<Impl>::squash(Addr new_PC)
{
    DPRINTF(Fetch, "Fetch: Squashing, setting PC to: %#x.\n", new_PC);
    cpu->setNextPC(new_PC + instSize);
    cpu->setPC(new_PC);

    _status = Squashing;

    // Clear out the instructions that are no longer valid.
    // Actually maybe slightly unrealistic to kill instructions that are
    // in flight like that between stages.  Perhaps just have next
    // stage ignore those instructions or something.  In the cycle where it's
    // returning from squashing, the other stages can just ignore the inputs
    // for that cycle.

    // Tell the CPU to remove any instructions that aren't currently
    // in the ROB (instructions in flight that were killed).
    cpu->removeInstsNotInROB();
}

template<class Impl>
void
SimpleFetch<Impl>::tick()
{
#if 0
    if (fromCommit->commitInfo.squash) {
        DPRINTF(Fetch, "Fetch: Squashing instructions due to squash "
                "from commit.\n");

        // In any case, squash.
        squash(fromCommit->commitInfo.nextPC);
        return;
    }

    if (fromDecode->decodeInfo.squash) {
        DPRINTF(Fetch, "Fetch: Squashing instructions due to squash "
                "from decode.\n");

        // Squash unless we're already squashing?
        squash(fromDecode->decodeInfo.nextPC);
        return;
    }

    if (fromCommit->commitInfo.robSquashing) {
        DPRINTF(Fetch, "Fetch: ROB is still squashing.\n");

        // Continue to squash.
        _status = Squashing;
        return;
    }

    if (fromDecode->decodeInfo.stall ||
        fromRename->renameInfo.stall ||
        fromIEW->iewInfo.stall ||
        fromCommit->commitInfo.stall)
    {
        DPRINTF(Fetch, "Fetch: Stalling stage.\n");
        DPRINTF(Fetch, "Fetch: Statuses: Decode: %i Rename: %i IEW: %i "
                "Commit: %i\n",
                fromDecode->decodeInfo.stall,
                fromRename->renameInfo.stall,
                fromIEW->iewInfo.stall,
                fromCommit->commitInfo.stall);
        // What to do if we're already in an icache stall?
    }
#endif

    if (_status != Blocked &&
        _status != Squashing &&
        _status != IcacheMissStall) {
        DPRINTF(Fetch, "Fetch: Running stage.\n");

        fetch();
    } else if (_status == Blocked) {
        // If still being told to stall, do nothing.
        if (fromDecode->decodeInfo.stall ||
            fromRename->renameInfo.stall ||
            fromIEW->iewInfo.stall ||
            fromCommit->commitInfo.stall)
        {
            DPRINTF(Fetch, "Fetch: Stalling stage.\n");
            DPRINTF(Fetch, "Fetch: Statuses: Decode: %i Rename: %i IEW: %i "
                    "Commit: %i\n",
                    fromDecode->decodeInfo.stall,
                    fromRename->renameInfo.stall,
                    fromIEW->iewInfo.stall,
                    fromCommit->commitInfo.stall);
        } else {

            DPRINTF(Fetch, "Fetch: Done blocking.\n");
            _status = Running;
        }

        if (fromCommit->commitInfo.squash) {
            DPRINTF(Fetch, "Fetch: Squashing instructions due to squash "
                    "from commit.\n");
            squash(fromCommit->commitInfo.nextPC);
            return;
        } else if (fromDecode->decodeInfo.squash) {
            DPRINTF(Fetch, "Fetch: Squashing instructions due to squash "
                    "from decode.\n");
            squash(fromDecode->decodeInfo.nextPC);
            return;
        } else if (fromCommit->commitInfo.robSquashing) {
            DPRINTF(Fetch, "Fetch: ROB is still squashing.\n");
            _status = Squashing;
            return;
        }
    } else if (_status == Squashing) {
        // If there are no squash signals then change back to running.
        // Note that when a squash starts happening, commitInfo.squash will
        // be high.  But if the squash is still in progress, then only
        // commitInfo.robSquashing will be high.
        if (!fromCommit->commitInfo.squash &&
            !fromCommit->commitInfo.robSquashing) {

            DPRINTF(Fetch, "Fetch: Done squashing.\n");
            _status = Running;
        } else if (fromCommit->commitInfo.squash) {
            // If there's a new squash, then start squashing again.
            squash(fromCommit->commitInfo.nextPC);
        } else {
            // Purely a debugging statement.
            DPRINTF(Fetch, "Fetch: ROB still squashing.\n");
        }
    }

}

template<class Impl>
void
SimpleFetch<Impl>::fetch()
{
    //////////////////////////////////////////
    // Check backwards communication
    //////////////////////////////////////////

    // If branch prediction is incorrect, squash any instructions,
    // update PC, and do not fetch anything this cycle.

    // Might want to put all the PC changing stuff in one area.
    // Normally should also check here to see if there is branch
    // misprediction info to update with.
    if (fromCommit->commitInfo.squash) {
        DPRINTF(Fetch, "Fetch: Squashing instructions due to squash "
                "from commit.\n");
        squash(fromCommit->commitInfo.nextPC);
        return;
    } else if (fromDecode->decodeInfo.squash) {
        DPRINTF(Fetch, "Fetch: Squashing instructions due to squash "
                "from decode.\n");
        squash(fromDecode->decodeInfo.nextPC);
        return;
    } else if (fromCommit->commitInfo.robSquashing) {
        DPRINTF(Fetch, "Fetch: ROB still squashing.\n");
        _status = Squashing;
        return;
    }

    // If being told to stall, do nothing.
    if (fromDecode->decodeInfo.stall ||
        fromRename->renameInfo.stall ||
        fromIEW->iewInfo.stall ||
        fromCommit->commitInfo.stall)
    {
        DPRINTF(Fetch, "Fetch: Stalling stage.\n");
        DPRINTF(Fetch, "Fetch: Statuses: Decode: %i Rename: %i IEW: %i "
                "Commit: %i\n",
                fromDecode->decodeInfo.stall,
                fromRename->renameInfo.stall,
                fromIEW->iewInfo.stall,
                fromCommit->commitInfo.stall);
        _status = Blocked;
        return;
    }

    //////////////////////////////////////////
    // Start actual fetch
    //////////////////////////////////////////

    // If nothing else outstanding, attempt to read instructions.

#ifdef FULL_SYSTEM
    // Flag to say whether or not address is physical addr.
    unsigned flags = cpu->inPalMode() ? PHYSICAL : 0;
#else
    unsigned flags = 0;
#endif // FULL_SYSTEM

    // The current PC.
    Addr PC = cpu->readPC();

    // Fault code for memory access.
    Fault fault = No_Fault;

    // If returning from the delay of a cache miss, then update the status
    // to running, otherwise do the cache access.
    if (_status == IcacheMissComplete) {
        DPRINTF(Fetch, "Fetch: Icache miss is complete.\n");

        // Reset the completion event to NULL.
        memReq->completionEvent = NULL;

        _status = Running;
    } else {
        DPRINTF(Fetch, "Fetch: Attempting to translate and read "
                       "instruction, starting at PC %08p.\n",
                PC);

        // Otherwise check if the instruction exists within the cache.
        // If it does, then proceed on to read the instruction and the rest
        // of the instructions in the cache line until either the end of the
        // cache line or a predicted taken branch is encountered.
        // Note that this simply checks if the first instruction exists
        // within the cache, assuming the rest of the cache line also exists
        // within the cache.

        // Setup the memReq to do a read of the first isntruction's address.
        // Set the appropriate read size and flags as well.
        memReq->cmd = Read;
        memReq->reset(PC, instSize, flags);

        // Translate the instruction request.
        // Should this function be
        // in the CPU class ?  Probably...ITB/DTB should exist within the
        // CPU.

        fault = cpu->translateInstReq(memReq);

        // In the case of faults, the fetch stage may need to stall and wait
        // on what caused the fetch (ITB or Icache miss).

        // If translation was successful, attempt to read the first
        // instruction.
        if (fault == No_Fault) {
            DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
            fault = cpu->mem->read(memReq, inst);
            // This read may change when the mem interface changes.
        }

        // Now do the timing access to see whether or not the instruction
        // exists within the cache.
        if (icacheInterface && fault == No_Fault) {
            DPRINTF(Fetch, "Fetch: Doing timing memory access.\n");
            memReq->completionEvent = NULL;

            memReq->time = curTick;

            MemAccessResult result = icacheInterface->access(memReq);

            // If the cache missed (in this model functional and timing
            // memories are different), then schedule an event to wake
            // up this stage once the cache miss completes.
            if (result != MA_HIT && icacheInterface->doEvents()) {
                memReq->completionEvent = &cacheCompletionEvent;
//        	    lastIcacheStall = curTick;

                // How does current model work as far as individual
                // stages scheduling/unscheduling?
                // Perhaps have only the main CPU scheduled/unscheduled,
                // and have it choose what stages to run appropriately.

                DPRINTF(Fetch, "Fetch: Stalling due to icache miss.\n");
                _status = IcacheMissStall;
                return;
            }
        }
    }

    // As far as timing goes, the CPU will need to send an event through
    // the MemReq in order to be woken up once the memory access completes.
    // Probably have a status on a per thread basis so each thread can
    // block independently and be woken up independently.

    Addr next_PC = 0;
    InstSeqNum inst_seq;

    // If the read of the first instruction was successful, then grab the
    // instructions from the rest of the cache line and put them into the
    // queue heading to decode.
    if (fault == No_Fault) {
        DPRINTF(Fetch, "Fetch: Adding instructions to queue to decode.\n");

        // Need to keep track of whether or not a predicted branch
        // ended this fetch block.
        bool predicted_branch = false;

        // Might want to keep track of various stats.
//        numLinesFetched++;

        // Get a sequence number.
        inst_seq = cpu->getAndIncrementInstSeq();

        // Because the first instruction was already fetched, create the
        // DynInst and put it into the queue to decode.
        DynInst *instruction = new DynInst(inst, PC, PC+instSize, inst_seq,
                                           cpu);
        DPRINTF(Fetch, "Fetch: Instruction %i created, with PC %#x\n",
                instruction, instruction->readPC());
        DPRINTF(Fetch, "Fetch: Instruction opcode is: %03p\n",
                OPCODE(inst));

        instruction->traceData =
            Trace::getInstRecord(curTick, cpu->xcBase(), cpu,
                                 instruction->staticInst,
                                 instruction->readPC(), 0);

        cpu->addInst(instruction);

        // Write the instruction to the first slot in the queue
        // that heads to decode.
        toDecode->insts[0] = instruction;

        // Now update the PC to fetch the next instruction in the cache
        // line.
        PC = PC + instSize;

        // Obtain the index into the cache line by getting only the low
        // order bits.
        int line_index = PC & cacheBlockMask;

        // Take instructions and put them into the queue heading to decode.
        // Then read the next instruction in the cache line.  Continue
        // until either all of the fetch bandwidth is used (not an issue for
        // non-SMT), or the end of the cache line is reached.  Note that
        // this assumes standard cachelines, and not something like a trace
        // cache where lines might not end at cache-line size aligned
        // addresses.
        // @todo: Fix the horrible amount of translates/reads that must
        // take place due to reading an entire cacheline.  Ideally it
        // should all take place at once, return an array of binary
        // instructions, which can then be used to get all the instructions
        // needed.  Figure out if I can roll it back into one loop.
        for (int fetched = 1;
             line_index < blkSize && fetched < fetchWidth;
             line_index+=instSize, ++fetched)
        {
            // Reset the mem request to setup the read of the next
            // instruction.
            memReq->reset(PC, instSize, flags);

            // Translate the instruction request.
            fault = cpu->translateInstReq(memReq);

            // Read instruction.
            if (fault == No_Fault) {
                fault = cpu->mem->read(memReq, inst);
            }

            // Check if there was a fault.
            if (fault != No_Fault) {
                panic("Fetch: Read of instruction faulted when it should "
                      "succeed; most likely exceeding cache line.\n");
            }

            // Get a sequence number.
            inst_seq = cpu->getAndIncrementInstSeq();

            // Create the actual DynInst.  Parameters are:
            // DynInst(instruction, PC, predicted PC, CPU pointer).
            // Because this simple model has no branch prediction, the
            // predicted PC will simply be PC+sizeof(MachInst).
            // Update to actually use a branch predictor to predict the
            // target in the future.
            DynInst *instruction = new DynInst(inst, PC, PC+instSize,
                                               inst_seq, cpu);
            DPRINTF(Fetch, "Fetch: Instruction %i created, with PC %#x\n",
                    instruction, instruction->readPC());
            DPRINTF(Fetch, "Fetch: Instruction opcode is: %03p\n",
                    OPCODE(inst));

            cpu->addInst(instruction);

            // Write the instruction to the proper slot in the queue
            // that heads to decode.
            toDecode->insts[fetched] = instruction;

            // Might want to keep track of various stats.
//             numInstsFetched++;

            // Now update the PC to fetch the next instruction in the cache
            // line.
            PC = PC + instSize;
        }

        // If no branches predicted taken, then increment PC with
        // fall-through path.  This simple model always predicts not
        // taken.
        if (!predicted_branch) {
            next_PC = PC;
        }
    }

    // Now that fetching is completed, update the PC to signify what the next
    // cycle will be.  Might want to move this to the beginning of this
    // function so that the PC updates at the beginning of everything.
    // Or might want to leave setting the PC to the main CPU, with fetch
    // only changing the nextPC (will require correct determination of
    // next PC).
    if (fault == No_Fault) {
        DPRINTF(Fetch, "Fetch: Setting PC to %08p.\n", next_PC);
        cpu->setPC(next_PC);
        cpu->setNextPC(next_PC + instSize);
    } else {
        // Handle the fault.
        // This stage will not be able to continue until all the ROB
        // slots are empty, at which point the fault can be handled.
        // The only other way it can wake up is if a squash comes along
        // and changes the PC.  Not sure how to handle that case...perhaps
        // have it handled by the upper level CPU class which peeks into the
        // time buffer and sees if a squash comes along, in which case it
        // changes the status.

        DPRINTF(Fetch, "Fetch: Blocked, need to handle the trap.\n");

        _status = Blocked;
#ifdef FULL_SYSTEM
        // Trap will probably need a pointer to the CPU to do accessing.
        // Or an exec context. --Write ProxyExecContext eventually.
        // Avoid using this for now as the xc really shouldn't be in here.
        cpu->trap(fault);
#else // !FULL_SYSTEM
        fatal("fault (%d) detected @ PC %08p", fault, cpu->readPC());
#endif // FULL_SYSTEM
    }
}