summaryrefslogtreecommitdiff
path: root/cpu/beta_cpu/inst_queue_impl.hh
blob: 03e3fed333683624d968f455d001c6a29a7d2332 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
#ifndef __INST_QUEUE_IMPL_HH__
#define __INST_QUEUE_IMPL_HH__

// Todo:
// Current ordering allows for 0 cycle added-to-scheduled.  Could maybe fake
// it; either do in reverse order, or have added instructions put into a
// different ready queue that, in scheduleRreadyInsts(), gets put onto the
// normal ready queue.  This would however give only a one cycle delay,
// but probably is more flexible to actually add in a delay parameter than
// just running it backwards.

#include <vector>

#include "sim/universe.hh"
#include "cpu/beta_cpu/inst_queue.hh"

// Either compile error or max int due to sign extension.
// Blatant hack to avoid compile warnings.
const InstSeqNum MaxInstSeqNum = 0 - 1;

template <class Impl>
InstructionQueue<Impl>::InstructionQueue(Params &params)
    : memDepUnit(params),
      numEntries(params.numIQEntries),
      intWidth(params.executeIntWidth),
      floatWidth(params.executeFloatWidth),
      totalWidth(params.issueWidth),
      numPhysIntRegs(params.numPhysIntRegs),
      numPhysFloatRegs(params.numPhysFloatRegs),
      commitToIEWDelay(params.commitToIEWDelay)
{
    // HACK: HARDCODED NUMBER.  REMOVE LATER AND ADD TO PARAMETER.
    branchWidth = 1;
    memoryWidth = 1;

    DPRINTF(IQ, "IQ: Int width is %i.\n", params.executeIntWidth);

    // Initialize the number of free IQ entries.
    freeEntries = numEntries;

    // Set the number of physical registers as the number of int + float
    numPhysRegs = numPhysIntRegs + numPhysFloatRegs;

    DPRINTF(IQ, "IQ: There are %i physical registers.\n", numPhysRegs);

    //Create an entry for each physical register within the
    //dependency graph.
    dependGraph = new DependencyEntry[numPhysRegs];

    // Resize the register scoreboard.
    regScoreboard.resize(numPhysRegs);

    // Initialize all the head pointers to point to NULL, and all the
    // entries as unready.
    // Note that in actuality, the registers corresponding to the logical
    // registers start off as ready.  However this doesn't matter for the
    // IQ as the instruction should have been correctly told if those
    // registers are ready in rename.  Thus it can all be initialized as
    // unready.
    for (int i = 0; i < numPhysRegs; ++i)
    {
        dependGraph[i].next = NULL;
        dependGraph[i].inst = NULL;
        regScoreboard[i] = false;
    }

}

template <class Impl>
void
InstructionQueue<Impl>::setCPU(FullCPU *cpu_ptr)
{
    cpu = cpu_ptr;

    tail = cpu->instList.begin();
}

template <class Impl>
void
InstructionQueue<Impl>::setIssueToExecuteQueue(
                        TimeBuffer<IssueStruct> *i2e_ptr)
{
    DPRINTF(IQ, "IQ: Set the issue to execute queue.\n");
    issueToExecuteQueue = i2e_ptr;
}

template <class Impl>
void
InstructionQueue<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
{
    DPRINTF(IQ, "IQ: Set the time buffer.\n");
    timeBuffer = tb_ptr;

    fromCommit = timeBuffer->getWire(-commitToIEWDelay);
}

// Might want to do something more complex if it knows how many instructions
// will be issued this cycle.
template <class Impl>
bool
InstructionQueue<Impl>::isFull()
{
    if (freeEntries == 0) {
        return(true);
    } else {
        return(false);
    }
}

template <class Impl>
unsigned
InstructionQueue<Impl>::numFreeEntries()
{
    return freeEntries;
}

template <class Impl>
void
InstructionQueue<Impl>::insert(DynInstPtr &new_inst)
{
    // Make sure the instruction is valid
    assert(new_inst);

    DPRINTF(IQ, "IQ: Adding instruction PC %#x to the IQ.\n",
            new_inst->readPC());

    // Check if there are any free entries.  Panic if there are none.
    // Might want to have this return a fault in the future instead of
    // panicing.
    assert(freeEntries != 0);

    // If the IQ currently has nothing in it, then there's a possibility
    // that the tail iterator is invalid (might have been pointing at an
    // instruction that was retired).  Reset the tail iterator.
    if (freeEntries == numEntries) {
        tail = cpu->instList.begin();
    }

    // Move the tail iterator.  Instructions may not have been issued
    // to the IQ, so we may have to increment the iterator more than once.
    while ((*tail) != new_inst) {
        tail++;

        // Make sure the tail iterator points at something legal.
        assert(tail != cpu->instList.end());
    }


    // Decrease the number of free entries.
    --freeEntries;

    // Look through its source registers (physical regs), and mark any
    // dependencies.
    addToDependents(new_inst);

    // Have this instruction set itself as the producer of its destination
    // register(s).
    createDependency(new_inst);

    // If it's a memory instruction, add it to the memory dependency
    // unit.
    if (new_inst->isMemRef()) {
        memDepUnit.insert(new_inst);
    }

    // If the instruction is ready then add it to the ready list.
    addIfReady(new_inst);

    assert(freeEntries == (numEntries - countInsts()));
}

template <class Impl>
void
InstructionQueue<Impl>::insertNonSpec(DynInstPtr &inst)
{
    nonSpecInsts[inst->seqNum] = inst;

    // @todo: Clean up this code; can do it by setting inst as unable
    // to issue, then calling normal insert on the inst.

    // Make sure the instruction is valid
    assert(inst);

    DPRINTF(IQ, "IQ: Adding instruction PC %#x to the IQ.\n",
            inst->readPC());

    // Check if there are any free entries.  Panic if there are none.
    // Might want to have this return a fault in the future instead of
    // panicing.
    assert(freeEntries != 0);

    // If the IQ currently has nothing in it, then there's a possibility
    // that the tail iterator is invalid (might have been pointing at an
    // instruction that was retired).  Reset the tail iterator.
    if (freeEntries == numEntries) {
        tail = cpu->instList.begin();
    }

    // Move the tail iterator.  Instructions may not have been issued
    // to the IQ, so we may have to increment the iterator more than once.
    while ((*tail) != inst) {
        tail++;

        // Make sure the tail iterator points at something legal.
        assert(tail != cpu->instList.end());
    }

    // Decrease the number of free entries.
    --freeEntries;

    // Look through its source registers (physical regs), and mark any
    // dependencies.
//    addToDependents(inst);

    // Have this instruction set itself as the producer of its destination
    // register(s).
    createDependency(inst);

    // If it's a memory instruction, add it to the memory dependency
    // unit.
    if (inst->isMemRef()) {
        memDepUnit.insert(inst);
    }
}

// Slightly hack function to advance the tail iterator in the case that
// the IEW stage issues an instruction that is not added to the IQ.  This
// is needed in case a long chain of such instructions occurs.
template <class Impl>
void
InstructionQueue<Impl>::advanceTail(DynInstPtr &inst)
{
    // Make sure the instruction is valid
    assert(inst);

    DPRINTF(IQ, "IQ: Adding instruction PC %#x to the IQ.\n",
            inst->readPC());

    // Check if there are any free entries.  Panic if there are none.
    // Might want to have this return a fault in the future instead of
    // panicing.
    assert(freeEntries != 0);

    // If the IQ currently has nothing in it, then there's a possibility
    // that the tail iterator is invalid (might have been pointing at an
    // instruction that was retired).  Reset the tail iterator.
    if (freeEntries == numEntries) {
        tail = cpu->instList.begin();
    }

    // Move the tail iterator.  Instructions may not have been issued
    // to the IQ, so we may have to increment the iterator more than once.
    while ((*tail) != inst) {
        tail++;

        // Make sure the tail iterator points at something legal.
        assert(tail != cpu->instList.end());
    }

    assert(freeEntries <= numEntries);

    // Have this instruction set itself as the producer of its destination
    // register(s).
    createDependency(inst);
}

// Need to make sure the number of float and integer instructions
// issued does not exceed the total issue bandwidth.
// @todo: Figure out a better way to remove the squashed items from the
// lists.  Checking the top item of each list to see if it's squashed
// wastes time and forces jumps.
template <class Impl>
void
InstructionQueue<Impl>::scheduleReadyInsts()
{
    DPRINTF(IQ, "IQ: Attempting to schedule ready instructions from "
                "the IQ.\n");

    int int_issued = 0;
    int float_issued = 0;
    int branch_issued = 0;
    int memory_issued = 0;
    int squashed_issued = 0;
    int total_issued = 0;

    IssueStruct *i2e_info = issueToExecuteQueue->access(0);

    bool insts_available = !readyBranchInsts.empty() ||
        !readyIntInsts.empty() ||
        !readyFloatInsts.empty() ||
        !readyMemInsts.empty() ||
        !readyMiscInsts.empty() ||
        !squashedInsts.empty();

    // Note: Requires a globally defined constant.
    InstSeqNum oldest_inst = MaxInstSeqNum;
    InstList list_with_oldest = None;

    // Temporary values.
    DynInstPtr int_head_inst;
    DynInstPtr float_head_inst;
    DynInstPtr branch_head_inst;
    DynInstPtr mem_head_inst;
    DynInstPtr misc_head_inst;
    DynInstPtr squashed_head_inst;

    // Somewhat nasty code to look at all of the lists where issuable
    // instructions are located, and choose the oldest instruction among
    // those lists.  Consider a rewrite in the future.
    while (insts_available && total_issued < totalWidth)
    {
        // Set this to false.  Each if-block is required to set it to true
        // if there were instructions available this check.  This will cause
        // this loop to run once more than necessary, but avoids extra calls.
        insts_available = false;

        oldest_inst = MaxInstSeqNum;

        list_with_oldest = None;

        if (!readyIntInsts.empty() &&
            int_issued < intWidth) {

            insts_available = true;

            int_head_inst = readyIntInsts.top();

            if (int_head_inst->isSquashed()) {
                readyIntInsts.pop();
                continue;
            }

            oldest_inst = int_head_inst->seqNum;

            list_with_oldest = Int;
        }

        if (!readyFloatInsts.empty() &&
            float_issued < floatWidth) {

            insts_available = true;

            float_head_inst = readyFloatInsts.top();

            if (float_head_inst->isSquashed()) {
                readyFloatInsts.pop();
                continue;
            } else if (float_head_inst->seqNum < oldest_inst) {
                oldest_inst = float_head_inst->seqNum;

                list_with_oldest = Float;
            }
        }

        if (!readyBranchInsts.empty() &&
            branch_issued < branchWidth) {

            insts_available = true;

            branch_head_inst = readyBranchInsts.top();

            if (branch_head_inst->isSquashed()) {
                readyBranchInsts.pop();
                continue;
            } else if (branch_head_inst->seqNum < oldest_inst) {
                oldest_inst = branch_head_inst->seqNum;

                list_with_oldest = Branch;
            }

        }

        if (!readyMemInsts.empty() &&
            memory_issued < memoryWidth) {

            insts_available = true;

            mem_head_inst = readyMemInsts.top();

            if (mem_head_inst->isSquashed()) {
                readyMemInsts.pop();
                continue;
            } else if (mem_head_inst->seqNum < oldest_inst) {
                oldest_inst = mem_head_inst->seqNum;

                list_with_oldest = Memory;
            }
        }

        if (!readyMiscInsts.empty()) {

            insts_available = true;

            misc_head_inst = readyMiscInsts.top();

            if (misc_head_inst->isSquashed()) {
                readyMiscInsts.pop();
                continue;
            } else if (misc_head_inst->seqNum < oldest_inst) {
                oldest_inst = misc_head_inst->seqNum;

                list_with_oldest = Misc;
            }
        }

        if (!squashedInsts.empty()) {

            insts_available = true;

            squashed_head_inst = squashedInsts.top();

            if (squashed_head_inst->seqNum < oldest_inst) {
                list_with_oldest = Squashed;
            }

        }

        DynInstPtr issuing_inst = NULL;

        switch (list_with_oldest) {
          case None:
            DPRINTF(IQ, "IQ: Not able to schedule any instructions. Issuing "
                    "inst is %#x.\n", issuing_inst);
            break;

          case Int:
            issuing_inst = int_head_inst;
            readyIntInsts.pop();
            ++int_issued;
            DPRINTF(IQ, "IQ: Issuing integer instruction PC %#x.\n",
                    issuing_inst->readPC());
            break;

          case Float:
            issuing_inst = float_head_inst;
            readyFloatInsts.pop();
            ++float_issued;
            DPRINTF(IQ, "IQ: Issuing float instruction PC %#x.\n",
                    issuing_inst->readPC());
            break;

          case Branch:
            issuing_inst = branch_head_inst;
            readyBranchInsts.pop();
            ++branch_issued;
            DPRINTF(IQ, "IQ: Issuing branch instruction PC %#x.\n",
                    issuing_inst->readPC());
            break;

          case Memory:
            issuing_inst = mem_head_inst;

            memDepUnit.issue(mem_head_inst);

            readyMemInsts.pop();
            ++memory_issued;
            DPRINTF(IQ, "IQ: Issuing memory instruction PC %#x.\n",
                    issuing_inst->readPC());
            break;

          case Misc:
            issuing_inst = misc_head_inst;
            readyMiscInsts.pop();
            DPRINTF(IQ, "IQ: Issuing a miscellaneous instruction PC %#x.\n",
                    issuing_inst->readPC());
            break;

          case Squashed:
            issuing_inst = squashed_head_inst;
            squashedInsts.pop();
            ++squashed_issued;
            DPRINTF(IQ, "IQ: Issuing squashed instruction PC %#x.\n",
                    issuing_inst->readPC());
            break;
        }

        if (list_with_oldest != None) {
            i2e_info->insts[total_issued] = issuing_inst;

            issuing_inst->setIssued();

            ++freeEntries;
            ++total_issued;
        }

        assert(freeEntries == (numEntries - countInsts()));
    }
}

template <class Impl>
void
InstructionQueue<Impl>::scheduleNonSpec(const InstSeqNum &inst)
{
    non_spec_it_t inst_it = nonSpecInsts.find(inst);

    assert(inst_it != nonSpecInsts.end());

    // Mark this instruction as ready to issue.
    (*inst_it).second->setCanIssue();

    // Now schedule the instruction.
    addIfReady((*inst_it).second);

    nonSpecInsts.erase(inst_it);
}

template <class Impl>
void
InstructionQueue<Impl>::violation(DynInstPtr &store,
                                  DynInstPtr &faulting_load)
{
    memDepUnit.violation(store, faulting_load);
}

template <class Impl>
void
InstructionQueue<Impl>::squash()
{
    DPRINTF(IQ, "IQ: Starting to squash instructions in the IQ.\n");

    // Read instruction sequence number of last instruction out of the
    // time buffer.
    squashedSeqNum = fromCommit->commitInfo.doneSeqNum;

    // Setup the squash iterator to point to the tail.
    squashIt = tail;

    // Call doSquash.
    doSquash();

    // Also tell the memory dependence unit to squash.
    memDepUnit.squash(squashedSeqNum);
}

template <class Impl>
void
InstructionQueue<Impl>::doSquash()
{
    // Make sure the squash iterator isn't pointing to nothing.
    assert(squashIt != cpu->instList.end());
    // Make sure the squashed sequence number is valid.
    assert(squashedSeqNum != 0);

    DPRINTF(IQ, "IQ: Squashing instructions in the IQ.\n");

    // Squash any instructions younger than the squashed sequence number
    // given.
    while ((*squashIt)->seqNum > squashedSeqNum) {
        DynInstPtr squashed_inst = (*squashIt);

        // Only handle the instruction if it actually is in the IQ and
        // hasn't already been squashed in the IQ.
        if (!squashed_inst->isIssued() &&
            !squashed_inst->isSquashedInIQ()) {
            // Remove the instruction from the dependency list.
            // Hack for now: These below don't add themselves to the
            // dependency list, so don't try to remove them.
            if (!squashed_inst->isNonSpeculative() &&
                !squashed_inst->isStore()) {
                int8_t total_src_regs = squashed_inst->numSrcRegs();

                for (int src_reg_idx = 0;
                     src_reg_idx < total_src_regs;
                     src_reg_idx++)
                {
                    PhysRegIndex src_reg =
                        squashed_inst->renamedSrcRegIdx(src_reg_idx);

                    // Only remove it from the dependency graph if it was
                    // placed there in the first place.
                    // HACK: This assumes that instructions woken up from the
                    // dependency chain aren't informed that a specific src
                    // register has become ready.  This may not always be true
                    // in the future.
                    if (!squashed_inst->isReadySrcRegIdx(src_reg_idx) &&
                        src_reg < numPhysRegs) {
                        dependGraph[src_reg].remove(squashed_inst);
                    }
                }
            }

            // Might want to also clear out the head of the dependency graph.

            // Mark it as squashed within the IQ.
            squashed_inst->setSquashedInIQ();

            squashedInsts.push(squashed_inst);

            DPRINTF(IQ, "IQ: Instruction PC %#x squashed.\n",
                    squashed_inst->readPC());
        }

        if (squashed_inst->isNonSpeculative() || squashed_inst->isStore()) {
            nonSpecInsts.erase(squashed_inst->seqNum);
        }

        --squashIt;
    }
}

template <class Impl>
void
InstructionQueue<Impl>::stopSquash()
{
    // Clear up the squash variables to ensure that squashing doesn't
    // get called improperly.
    squashedSeqNum = 0;

    squashIt = cpu->instList.end();
}

template <class Impl>
void
InstructionQueue<Impl>::wakeDependents(DynInstPtr &completed_inst)
{
    DPRINTF(IQ, "IQ: Waking dependents of completed instruction.\n");
    //Look at the physical destination register of the DynInst
    //and look it up on the dependency graph.  Then mark as ready
    //any instructions within the instruction queue.
    int8_t total_dest_regs = completed_inst->numDestRegs();

    DependencyEntry *curr;

    // Tell the memory dependence unit to wake any dependents on this
    // instruction if it is a memory instruction.

    if (completed_inst->isMemRef()) {
        memDepUnit.wakeDependents(completed_inst);
    }

    for (int dest_reg_idx = 0;
         dest_reg_idx < total_dest_regs;
         dest_reg_idx++)
    {
        PhysRegIndex dest_reg =
            completed_inst->renamedDestRegIdx(dest_reg_idx);

        // Special case of uniq or control registers.  They are not
        // handled by the IQ and thus have no dependency graph entry.
        // @todo Figure out a cleaner way to handle thie.
        if (dest_reg >= numPhysRegs) {
            continue;
        }

        DPRINTF(IQ, "IQ: Waking any dependents on register %i.\n",
                (int) dest_reg);

        //Maybe abstract this part into a function.
        //Go through the dependency chain, marking the registers as ready
        //within the waiting instructions.
        while (dependGraph[dest_reg].next) {

            curr = dependGraph[dest_reg].next;

            DPRINTF(IQ, "IQ: Waking up a dependent instruction, PC%#x.\n",
                    curr->inst->readPC());

            // Might want to give more information to the instruction
            // so that it knows which of its source registers is ready.
            // However that would mean that the dependency graph entries
            // would need to hold the src_reg_idx.
            curr->inst->markSrcRegReady();

            addIfReady(curr->inst);

            dependGraph[dest_reg].next = curr->next;

            delete curr;
        }

        // Reset the head node now that all of its dependents have been woken
        // up.
        dependGraph[dest_reg].next = NULL;
        dependGraph[dest_reg].inst = NULL;

        // Mark the scoreboard as having that register ready.
        regScoreboard[dest_reg] = true;
    }
}

template <class Impl>
bool
InstructionQueue<Impl>::addToDependents(DynInstPtr &new_inst)
{
    // Loop through the instruction's source registers, adding
    // them to the dependency list if they are not ready.
    int8_t total_src_regs = new_inst->numSrcRegs();
    bool return_val = false;

    for (int src_reg_idx = 0;
         src_reg_idx < total_src_regs;
         src_reg_idx++)
    {
        // Only add it to the dependency graph if it's not ready.
        if (!new_inst->isReadySrcRegIdx(src_reg_idx)) {
            PhysRegIndex src_reg = new_inst->renamedSrcRegIdx(src_reg_idx);

            // Check the IQ's scoreboard to make sure the register
            // hasn't become ready while the instruction was in flight
            // between stages.  Only if it really isn't ready should
            // it be added to the dependency graph.
            if (src_reg >= numPhysRegs) {
                continue;
            } else if (regScoreboard[src_reg] == false) {
                DPRINTF(IQ, "IQ: Instruction PC %#x has src reg %i that "
                        "is being added to the dependency chain.\n",
                        new_inst->readPC(), src_reg);

                dependGraph[src_reg].insert(new_inst);

                // Change the return value to indicate that something
                // was added to the dependency graph.
                return_val = true;
            } else {
                DPRINTF(IQ, "IQ: Instruction PC %#x has src reg %i that "
                        "became ready before it reached the IQ.\n",
                        new_inst->readPC(), src_reg);
                // Mark a register ready within the instruction.
                new_inst->markSrcRegReady();
            }
        }
    }

    return return_val;
}

template <class Impl>
void
InstructionQueue<Impl>::createDependency(DynInstPtr &new_inst)
{
    //Actually nothing really needs to be marked when an
    //instruction becomes the producer of a register's value,
    //but for convenience a ptr to the producing instruction will
    //be placed in the head node of the dependency links.
    int8_t total_dest_regs = new_inst->numDestRegs();

    for (int dest_reg_idx = 0;
         dest_reg_idx < total_dest_regs;
         dest_reg_idx++)
    {
        PhysRegIndex dest_reg = new_inst->renamedDestRegIdx(dest_reg_idx);

        // Instructions that use the misc regs will have a reg number
        // higher than the normal physical registers.  In this case these
        // registers are not renamed, and there is no need to track
        // dependencies as these instructions must be executed at commit.
        if (dest_reg >= numPhysRegs) {
            continue;
        }

        dependGraph[dest_reg].inst = new_inst;
#if 0
        if (dependGraph[dest_reg].next) {
            panic("Dependency chain of dest reg %i is not empty.\n",
                  dest_reg);
        }
#endif
        assert(!dependGraph[dest_reg].next);
        // Mark the scoreboard to say it's not yet ready.
        regScoreboard[dest_reg] = false;
    }
}

template <class Impl>
void
InstructionQueue<Impl>::DependencyEntry::insert(DynInstPtr &new_inst)
{
    //Add this new, dependent instruction at the head of the dependency
    //chain.

    // First create the entry that will be added to the head of the
    // dependency chain.
    DependencyEntry *new_entry = new DependencyEntry;
    new_entry->next = this->next;
    new_entry->inst = new_inst;

    // Then actually add it to the chain.
    this->next = new_entry;
}

template <class Impl>
void
InstructionQueue<Impl>::DependencyEntry::remove(DynInstPtr &inst_to_remove)
{
    DependencyEntry *prev = this;
    DependencyEntry *curr = this->next;

    // Make sure curr isn't NULL.  Because this instruction is being
    // removed from a dependency list, it must have been placed there at
    // an earlier time.  The dependency chain should not be empty,
    // unless the instruction dependent upon it is already ready.
    if (curr == NULL) {
        return;
    }

    // Find the instruction to remove within the dependency linked list.
    while(curr->inst != inst_to_remove)
    {
        prev = curr;
        curr = curr->next;

        assert(curr != NULL);
    }

    // Now remove this instruction from the list.
    prev->next = curr->next;

    delete curr;
}

template <class Impl>
void
InstructionQueue<Impl>::dumpDependGraph()
{
    DependencyEntry *curr;

    for (int i = 0; i < numPhysRegs; ++i)
    {
        curr = &dependGraph[i];

        if (curr->inst) {
            cprintf("dependGraph[%i]: producer: %#x consumer: ", i,
                    curr->inst->readPC());
        } else {
            cprintf("dependGraph[%i]: No producer. consumer: ", i);
        }

        while (curr->next != NULL) {
            curr = curr->next;

            cprintf("%#x ", curr->inst->readPC());
        }

        cprintf("\n");
    }
}

template <class Impl>
void
InstructionQueue<Impl>::addIfReady(DynInstPtr &inst)
{
    //If the instruction now has all of its source registers
    // available, then add it to the list of ready instructions.
    if (inst->readyToIssue()) {

        //Add the instruction to the proper ready list.
        if (inst->isControl()) {

            DPRINTF(IQ, "IQ: Branch instruction is ready to issue, "
                    "putting it onto the ready list, PC %#x.\n",
                    inst->readPC());
            readyBranchInsts.push(inst);

        } else if (inst->isMemRef()) {

            DPRINTF(IQ, "IQ: Checking if memory instruction can issue.\n");

            if (memDepUnit.readyToIssue(inst)) {
                DPRINTF(IQ, "IQ: Memory instruction is ready to issue, "
                        "putting it onto the ready list, PC %#x.\n",
                        inst->readPC());
                readyMemInsts.push(inst);
            }

        } else if (inst->isInteger()) {

            DPRINTF(IQ, "IQ: Integer instruction is ready to issue, "
                    "putting it onto the ready list, PC %#x.\n",
                    inst->readPC());
            readyIntInsts.push(inst);

        } else if (inst->isFloating()) {

            DPRINTF(IQ, "IQ: Floating instruction is ready to issue, "
                    "putting it onto the ready list, PC %#x.\n",
                    inst->readPC());
            readyFloatInsts.push(inst);

        } else {
            DPRINTF(IQ, "IQ: Miscellaneous instruction is ready to issue, "
                    "putting it onto the ready list, PC %#x..\n",
                    inst->readPC());

            readyMiscInsts.push(inst);
        }
    }
}

template <class Impl>
int
InstructionQueue<Impl>::countInsts()
{
    ListIt count_it = cpu->instList.begin();
    int total_insts = 0;

    while (count_it != tail) {
        if (!(*count_it)->isIssued()) {
            ++total_insts;
        }

        ++count_it;

        assert(count_it != cpu->instList.end());
    }

    // Need to count the tail iterator as well.
    if (count_it != cpu->instList.end() &&
        (*count_it) &&
        !(*count_it)->isIssued()) {
        ++total_insts;
    }

    return total_insts;
}

template <class Impl>
void
InstructionQueue<Impl>::dumpLists()
{
    cprintf("Ready integer list size: %i\n", readyIntInsts.size());

    cprintf("Ready float list size: %i\n", readyFloatInsts.size());

    cprintf("Ready branch list size: %i\n", readyBranchInsts.size());

    cprintf("Ready memory list size: %i\n", readyMemInsts.size());

    cprintf("Ready misc list size: %i\n", readyMiscInsts.size());

    cprintf("Squashed list size: %i\n", squashedInsts.size());

    cprintf("Non speculative list size: %i\n", nonSpecInsts.size());

    non_spec_it_t non_spec_it = nonSpecInsts.begin();

    cprintf("Non speculative list: ");

    while (non_spec_it != nonSpecInsts.end()) {
        cprintf("%#x ", (*non_spec_it).second->readPC());
        ++non_spec_it;
    }

    cprintf("\n");

}

#endif // __INST_QUEUE_IMPL_HH__