1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
|
#include <map>
#include "cpu/beta_cpu/mem_dep_unit.hh"
template <class MemDepPred, class Impl>
MemDepUnit<MemDepPred, Impl>::MemDepUnit(Params ¶ms)
: depPred(params.SSITSize, params.LFSTSize)
{
DPRINTF(MemDepUnit, "MemDepUnit: Creating MemDepUnit object.\n");
}
template <class MemDepPred, class Impl>
void
MemDepUnit<MemDepPred, Impl>::regStats()
{
insertedLoads
.name(name() + ".memDep.insertedLoads")
.desc("Number of loads inserted to the mem dependence unit.");
insertedStores
.name(name() + ".memDep.insertedStores")
.desc("Number of stores inserted to the mem dependence unit.");
conflictingLoads
.name(name() + ".memDep.conflictingLoads")
.desc("Number of conflicting loads.");
conflictingStores
.name(name() + ".memDep.conflictingStores")
.desc("Number of conflicting stores.");
}
template <class MemDepPred, class Impl>
void
MemDepUnit<MemDepPred, Impl>::insert(DynInstPtr &inst)
{
InstSeqNum inst_seq_num = inst->seqNum;
Dependency unresolved_dependencies(inst_seq_num);
InstSeqNum producing_store = depPred.checkInst(inst->readPC());
if (producing_store == 0 ||
storeDependents.find(producing_store) == storeDependents.end()) {
DPRINTF(MemDepUnit, "MemDepUnit: No dependency for inst PC "
"%#x.\n", inst->readPC());
unresolved_dependencies.storeDep = storeDependents.end();
if (inst->readyToIssue()) {
readyInsts.insert(inst_seq_num);
} else {
unresolved_dependencies.memDepReady = true;
waitingInsts.insert(unresolved_dependencies);
}
} else {
DPRINTF(MemDepUnit, "MemDepUnit: Adding to dependency list; "
"inst PC %#x is dependent on seq num %i.\n",
inst->readPC(), producing_store);
if (inst->readyToIssue()) {
unresolved_dependencies.regsReady = true;
}
// Find the store that this instruction is dependent on.
sd_it_t store_loc = storeDependents.find(producing_store);
assert(store_loc != storeDependents.end());
// Record the location of the store that this instruction is
// dependent on.
unresolved_dependencies.storeDep = store_loc;
// If it's not already ready, then add it to the renamed
// list and the dependencies.
dep_it_t inst_loc =
(waitingInsts.insert(unresolved_dependencies)).first;
// Add this instruction to the list of dependents.
(*store_loc).second.push_back(inst_loc);
assert(!(*store_loc).second.empty());
if (inst->isLoad()) {
++conflictingLoads;
} else {
++conflictingStores;
}
}
if (inst->isStore()) {
DPRINTF(MemDepUnit, "MemDepUnit: Inserting store PC %#x.\n",
inst->readPC());
depPred.insertStore(inst->readPC(), inst_seq_num);
// Make sure this store isn't already in this list.
assert(storeDependents.find(inst_seq_num) == storeDependents.end());
// Put a dependency entry in at the store's sequence number.
// Uh, not sure how this works...I want to create an entry but
// I don't have anything to put into the value yet.
storeDependents[inst_seq_num];
assert(storeDependents.size() != 0);
++insertedStores;
} else if (inst->isLoad()) {
++insertedLoads;
} else {
panic("MemDepUnit: Unknown type! (most likely a barrier).");
}
memInsts[inst_seq_num] = inst;
}
template <class MemDepPred, class Impl>
void
MemDepUnit<MemDepPred, Impl>::insertNonSpec(DynInstPtr &inst)
{
InstSeqNum inst_seq_num = inst->seqNum;
Dependency non_spec_inst(inst_seq_num);
non_spec_inst.storeDep = storeDependents.end();
waitingInsts.insert(non_spec_inst);
// Might want to turn this part into an inline function or something.
// It's shared between both insert functions.
if (inst->isStore()) {
DPRINTF(MemDepUnit, "MemDepUnit: Inserting store PC %#x.\n",
inst->readPC());
depPred.insertStore(inst->readPC(), inst_seq_num);
// Make sure this store isn't already in this list.
assert(storeDependents.find(inst_seq_num) == storeDependents.end());
// Put a dependency entry in at the store's sequence number.
// Uh, not sure how this works...I want to create an entry but
// I don't have anything to put into the value yet.
storeDependents[inst_seq_num];
assert(storeDependents.size() != 0);
++insertedStores;
} else if (inst->isLoad()) {
++insertedLoads;
} else {
panic("MemDepUnit: Unknown type! (most likely a barrier).");
}
memInsts[inst_seq_num] = inst;
}
template <class MemDepPred, class Impl>
typename Impl::DynInstPtr &
MemDepUnit<MemDepPred, Impl>::top()
{
topInst = memInsts.find( (*readyInsts.begin()) );
DPRINTF(MemDepUnit, "MemDepUnit: Top instruction is PC %#x.\n",
(*topInst).second->readPC());
return (*topInst).second;
}
template <class MemDepPred, class Impl>
void
MemDepUnit<MemDepPred, Impl>::pop()
{
DPRINTF(MemDepUnit, "MemDepUnit: Removing instruction PC %#x.\n",
(*topInst).second->readPC());
wakeDependents((*topInst).second);
issue((*topInst).second);
memInsts.erase(topInst);
topInst = memInsts.end();
}
template <class MemDepPred, class Impl>
void
MemDepUnit<MemDepPred, Impl>::regsReady(DynInstPtr &inst)
{
DPRINTF(MemDepUnit, "MemDepUnit: Marking registers as ready for "
"instruction PC %#x.\n",
inst->readPC());
InstSeqNum inst_seq_num = inst->seqNum;
Dependency inst_to_find(inst_seq_num);
dep_it_t waiting_inst = waitingInsts.find(inst_to_find);
assert(waiting_inst != waitingInsts.end());
if ((*waiting_inst).memDepReady) {
DPRINTF(MemDepUnit, "MemDepUnit: Instruction has its memory "
"dependencies resolved, adding it to the ready list.\n");
moveToReady(waiting_inst);
} else {
DPRINTF(MemDepUnit, "MemDepUnit: Instruction still waiting on "
"memory dependency.\n");
(*waiting_inst).regsReady = true;
}
}
template <class MemDepPred, class Impl>
void
MemDepUnit<MemDepPred, Impl>::nonSpecInstReady(DynInstPtr &inst)
{
DPRINTF(MemDepUnit, "MemDepUnit: Marking non speculative "
"instruction PC %#x as ready.\n",
inst->readPC());
InstSeqNum inst_seq_num = inst->seqNum;
Dependency inst_to_find(inst_seq_num);
dep_it_t waiting_inst = waitingInsts.find(inst_to_find);
assert(waiting_inst != waitingInsts.end());
moveToReady(waiting_inst);
}
template <class MemDepPred, class Impl>
void
MemDepUnit<MemDepPred, Impl>::issue(DynInstPtr &inst)
{
assert(readyInsts.find(inst->seqNum) != readyInsts.end());
DPRINTF(MemDepUnit, "MemDepUnit: Issuing instruction PC %#x.\n",
inst->readPC());
// Remove the instruction from the ready list.
readyInsts.erase(inst->seqNum);
depPred.issued(inst->readPC(), inst->seqNum, inst->isStore());
}
template <class MemDepPred, class Impl>
void
MemDepUnit<MemDepPred, Impl>::wakeDependents(DynInstPtr &inst)
{
// Only stores have dependents.
if (!inst->isStore()) {
return;
}
// Wake any dependencies.
sd_it_t sd_it = storeDependents.find(inst->seqNum);
// If there's no entry, then return. Really there should only be
// no entry if the instruction is a load.
if (sd_it == storeDependents.end()) {
DPRINTF(MemDepUnit, "MemDepUnit: Instruction PC %#x, sequence "
"number %i has no dependents.\n",
inst->readPC(), inst->seqNum);
return;
}
for (int i = 0; i < (*sd_it).second.size(); ++i ) {
dep_it_t woken_inst = (*sd_it).second[i];
DPRINTF(MemDepUnit, "MemDepUnit: Waking up a dependent inst, "
"sequence number %i.\n",
(*woken_inst).seqNum);
#if 0
// Should we have reached instructions that are actually squashed,
// there will be no more useful instructions in this dependency
// list. Break out early.
if (waitingInsts.find(woken_inst) == waitingInsts.end()) {
DPRINTF(MemDepUnit, "MemDepUnit: Dependents on inst PC %#x "
"are squashed, starting at SN %i. Breaking early.\n",
inst->readPC(), woken_inst);
break;
}
#endif
if ((*woken_inst).regsReady) {
moveToReady(woken_inst);
} else {
(*woken_inst).memDepReady = true;
}
}
storeDependents.erase(sd_it);
}
template <class MemDepPred, class Impl>
void
MemDepUnit<MemDepPred, Impl>::squash(const InstSeqNum &squashed_num)
{
if (!waitingInsts.empty()) {
dep_it_t waiting_it = waitingInsts.end();
--waiting_it;
// Remove entries from the renamed list as long as we haven't reached
// the end and the entries continue to be younger than the squashed.
while (!waitingInsts.empty() &&
(*waiting_it).seqNum > squashed_num)
{
if (!(*waiting_it).memDepReady &&
(*waiting_it).storeDep != storeDependents.end()) {
sd_it_t sd_it = (*waiting_it).storeDep;
// Make sure the iterator that the store has pointing
// back is actually to this instruction.
assert((*sd_it).second.back() == waiting_it);
// Now remove this from the store's list of dependent
// instructions.
(*sd_it).second.pop_back();
}
waitingInsts.erase(waiting_it--);
}
}
if (!readyInsts.empty()) {
sn_it_t ready_it = readyInsts.end();
--ready_it;
// Same for the ready list.
while (!readyInsts.empty() &&
(*ready_it) > squashed_num)
{
readyInsts.erase(ready_it--);
}
}
if (!storeDependents.empty()) {
sd_it_t dep_it = storeDependents.end();
--dep_it;
// Same for the dependencies list.
while (!storeDependents.empty() &&
(*dep_it).first > squashed_num)
{
// This store's list of dependent instructions should be empty.
assert((*dep_it).second.empty());
storeDependents.erase(dep_it--);
}
}
// Tell the dependency predictor to squash as well.
depPred.squash(squashed_num);
}
template <class MemDepPred, class Impl>
void
MemDepUnit<MemDepPred, Impl>::violation(DynInstPtr &store_inst,
DynInstPtr &violating_load)
{
DPRINTF(MemDepUnit, "MemDepUnit: Passing violating PCs to store sets,"
" load: %#x, store: %#x\n", violating_load->readPC(),
store_inst->readPC());
// Tell the memory dependence unit of the violation.
depPred.violation(violating_load->readPC(), store_inst->readPC());
}
template <class MemDepPred, class Impl>
inline void
MemDepUnit<MemDepPred, Impl>::moveToReady(dep_it_t &woken_inst)
{
DPRINTF(MemDepUnit, "MemDepUnit: Adding instruction sequence number %i "
"to the ready list.\n", (*woken_inst).seqNum);
// Add it to the ready list.
readyInsts.insert((*woken_inst).seqNum);
// Remove it from the waiting instructions.
waitingInsts.erase(woken_inst);
}
|