1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
|
#ifndef __ROB_IMPL_HH__
#define __ROB_IMPL_HH__
#include "cpu/beta_cpu/rob.hh"
template <class Impl>
ROB<Impl>::ROB(unsigned _numEntries, unsigned _squashWidth)
: numEntries(_numEntries),
squashWidth(_squashWidth),
numInstsInROB(0),
squashedSeqNum(0)
{
doneSquashing = true;
}
template <class Impl>
void
ROB<Impl>::setCPU(FullCPU *cpu_ptr)
{
cpu = cpu_ptr;
// Set the tail to the beginning of the CPU instruction list so that
// upon the first instruction being inserted into the ROB, the tail
// iterator can simply be incremented.
tail = cpu->instList.begin();
// Set the squash iterator to the end of the instruction list.
squashIt = cpu->instList.end();
}
template <class Impl>
int
ROB<Impl>::countInsts()
{
// Start at 1; if the tail matches cpu->instList.begin(), then there is
// one inst in the ROB.
int return_val = 1;
// There are quite a few special cases. Do not use this function other
// than for debugging purposes.
if (cpu->instList.begin() == cpu->instList.end()) {
// In this case there are no instructions in the list. The ROB
// must be empty.
return 0;
} else if (tail == cpu->instList.end()) {
// In this case, the tail is not yet pointing to anything valid.
// The ROB must be empty.
return 0;
}
// Iterate through the ROB from the head to the tail, counting the
// entries.
for (InstIt_t i = cpu->instList.begin(); i != tail; ++i)
{
assert(i != cpu->instList.end());
++return_val;
}
return return_val;
// Because the head won't be tracked properly until the ROB gets the
// first instruction, and any time that the ROB is empty and has not
// yet gotten the instruction, this function doesn't work.
// return numInstsInROB;
}
template <class Impl>
void
ROB<Impl>::insertInst(DynInstPtr &inst)
{
// Make sure we have the right number of instructions.
assert(numInstsInROB == countInsts());
// Make sure the instruction is valid.
assert(inst);
DPRINTF(ROB, "ROB: Adding inst PC %#x to the ROB.\n", inst->readPC());
// If the ROB is full then exit.
assert(numInstsInROB != numEntries);
++numInstsInROB;
// Increment the tail iterator, moving it one instruction back.
// There is a special case if the ROB was empty prior to this insertion,
// in which case the tail will be pointing at instList.end(). If that
// happens, then reset the tail to the beginning of the list.
if (tail != cpu->instList.end()) {
++tail;
} else {
tail = cpu->instList.begin();
}
// Make sure the tail iterator is actually pointing at the instruction
// added.
assert((*tail) == inst);
DPRINTF(ROB, "ROB: Now has %d instructions.\n", numInstsInROB);
}
// Whatever calls this function needs to ensure that it properly frees up
// registers prior to this function.
template <class Impl>
void
ROB<Impl>::retireHead()
{
assert(numInstsInROB == countInsts());
assert(numInstsInROB > 0);
DynInstPtr head_inst;
// Get the head ROB instruction.
head_inst = cpu->instList.front();
// Make certain this can retire.
assert(head_inst->readyToCommit());
DPRINTF(ROB, "ROB: Retiring head instruction of the ROB, "
"instruction PC %#x, seq num %i\n", head_inst->readPC(),
head_inst->seqNum);
// Keep track of how many instructions are in the ROB.
--numInstsInROB;
// Tell CPU to remove the instruction from the list of instructions.
// A special case is needed if the instruction being retired is the
// only instruction in the ROB; otherwise the tail iterator will become
// invalidated.
if (tail == cpu->instList.begin()) {
cpu->removeFrontInst(head_inst);
tail = cpu->instList.end();
} else {
cpu->removeFrontInst(head_inst);
}
}
template <class Impl>
bool
ROB<Impl>::isHeadReady()
{
if (numInstsInROB != 0) {
DynInstPtr head_inst = cpu->instList.front();
return head_inst->readyToCommit();
}
return false;
}
template <class Impl>
unsigned
ROB<Impl>::numFreeEntries()
{
assert(numInstsInROB == countInsts());
return numEntries - numInstsInROB;
}
template <class Impl>
void
ROB<Impl>::doSquash()
{
DPRINTF(ROB, "ROB: Squashing instructions.\n");
assert(squashIt != cpu->instList.end());
for (int numSquashed = 0;
numSquashed < squashWidth && (*squashIt)->seqNum != squashedSeqNum;
++numSquashed)
{
// Ensure that the instruction is younger.
assert((*squashIt)->seqNum > squashedSeqNum);
DPRINTF(ROB, "ROB: Squashing instruction PC %#x, seq num %i.\n",
(*squashIt)->readPC(), (*squashIt)->seqNum);
// Mark the instruction as squashed, and ready to commit so that
// it can drain out of the pipeline.
(*squashIt)->setSquashed();
(*squashIt)->setCanCommit();
// Special case for when squashing due to a syscall. It's possible
// that the squash happened after the head instruction was already
// committed, meaning that (*squashIt)->seqNum != squashedSeqNum
// will never be false. Normally the squash would never be able
// to go past the head of the ROB; in this case it might, so it
// must be handled otherwise it will segfault.
#ifndef FULL_SYSTEM
if (squashIt == cpu->instList.begin()) {
DPRINTF(ROB, "ROB: Reached head of instruction list while "
"squashing.\n");
squashIt = cpu->instList.end();
doneSquashing = true;
return;
}
#endif
// Move the tail iterator to the next instruction.
squashIt--;
}
// Check if ROB is done squashing.
if ((*squashIt)->seqNum == squashedSeqNum) {
DPRINTF(ROB, "ROB: Done squashing instructions.\n");
squashIt = cpu->instList.end();
doneSquashing = true;
}
}
template <class Impl>
void
ROB<Impl>::squash(InstSeqNum squash_num)
{
DPRINTF(ROB, "ROB: Starting to squash within the ROB.\n");
doneSquashing = false;
squashedSeqNum = squash_num;
assert(tail != cpu->instList.end());
squashIt = tail;
doSquash();
}
template <class Impl>
uint64_t
ROB<Impl>::readHeadPC()
{
assert(numInstsInROB == countInsts());
DynInstPtr head_inst = cpu->instList.front();
return head_inst->readPC();
}
template <class Impl>
uint64_t
ROB<Impl>::readHeadNextPC()
{
assert(numInstsInROB == countInsts());
DynInstPtr head_inst = cpu->instList.front();
return head_inst->readNextPC();
}
template <class Impl>
InstSeqNum
ROB<Impl>::readHeadSeqNum()
{
// Return the last sequence number that has not been squashed. Other
// stages can use it to squash any instructions younger than the current
// tail.
DynInstPtr head_inst = cpu->instList.front();
return head_inst->seqNum;
}
template <class Impl>
uint64_t
ROB<Impl>::readTailPC()
{
assert(numInstsInROB == countInsts());
assert(tail != cpu->instList.end());
return (*tail)->readPC();
}
template <class Impl>
InstSeqNum
ROB<Impl>::readTailSeqNum()
{
// Return the last sequence number that has not been squashed. Other
// stages can use it to squash any instructions younger than the current
// tail.
return (*tail)->seqNum;
}
#endif // __ROB_IMPL_HH__
|