summaryrefslogtreecommitdiff
path: root/cpu/checker/cpu.cc
blob: f195c8842467eac3bfb2988275b475840a1f9e33 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
/*
 * Copyright (c) 2006 The Regents of The University of Michigan
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <list>
#include <string>

#include "base/refcnt.hh"
#include "cpu/base.hh"
#include "cpu/base_dyn_inst.hh"
#include "cpu/checker/cpu.hh"
#include "cpu/cpu_exec_context.hh"
#include "cpu/exec_context.hh"
#include "cpu/static_inst.hh"
#include "sim/byteswap.hh"
#include "sim/sim_object.hh"
#include "sim/stats.hh"

#include "cpu/o3/alpha_dyn_inst.hh"
#include "cpu/o3/alpha_impl.hh"

#include "cpu/ozone/dyn_inst.hh"
#include "cpu/ozone/ozone_impl.hh"
#include "cpu/ozone/simple_impl.hh"

#if FULL_SYSTEM
#include "sim/system.hh"
#include "arch/vtophys.hh"
#endif // FULL_SYSTEM

using namespace std;
//The CheckerCPU does alpha only
using namespace AlphaISA;

void
CheckerCPU::init()
{
}

CheckerCPU::CheckerCPU(Params *p)
    : BaseCPU(p), cpuXC(NULL), xcProxy(NULL)
{
    memReq = new MemReq();
    memReq->xc = xcProxy;
    memReq->asid = 0;
    memReq->data = new uint8_t[64];

    numInst = 0;
    startNumInst = 0;
    numLoad = 0;
    startNumLoad = 0;
    youngestSN = 0;

    changedPC = willChangePC = changedNextPC = false;

    exitOnError = p->exitOnError;
    updateOnError = p->updateOnError;
#if FULL_SYSTEM
    itb = p->itb;
    dtb = p->dtb;
    systemPtr = NULL;
    memPtr = NULL;
#endif
}

CheckerCPU::~CheckerCPU()
{
}

void
CheckerCPU::setMemory(FunctionalMemory *mem)
{
    memPtr = mem;
#if !FULL_SYSTEM
    cpuXC = new CPUExecContext(this, /* thread_num */ 0, mem,
                               /* asid */ 0);

    cpuXC->setStatus(ExecContext::Suspended);
    xcProxy = cpuXC->getProxy();
    execContexts.push_back(xcProxy);
#else
    if (systemPtr) {
        cpuXC = new CPUExecContext(this, 0, systemPtr, itb, dtb, memPtr, false);

        cpuXC->setStatus(ExecContext::Suspended);
        xcProxy = cpuXC->getProxy();
        execContexts.push_back(xcProxy);
        memReq->xc = xcProxy;
        delete cpuXC->kernelStats;
        cpuXC->kernelStats = NULL;
    }
#endif
}

#if FULL_SYSTEM
void
CheckerCPU::setSystem(System *system)
{
    systemPtr = system;

    if (memPtr) {
        cpuXC = new CPUExecContext(this, 0, systemPtr, itb, dtb, memPtr, false);

        cpuXC->setStatus(ExecContext::Suspended);
        xcProxy = cpuXC->getProxy();
        execContexts.push_back(xcProxy);
        memReq->xc = xcProxy;
        delete cpuXC->kernelStats;
        cpuXC->kernelStats = NULL;
    }
}
#endif

void
CheckerCPU::serialize(ostream &os)
{
/*
    BaseCPU::serialize(os);
    SERIALIZE_SCALAR(inst);
    nameOut(os, csprintf("%s.xc", name()));
    cpuXC->serialize(os);
    cacheCompletionEvent.serialize(os);
*/
}

void
CheckerCPU::unserialize(Checkpoint *cp, const string &section)
{
/*
    BaseCPU::unserialize(cp, section);
    UNSERIALIZE_SCALAR(inst);
    cpuXC->unserialize(cp, csprintf("%s.xc", section));
*/
}

Fault
CheckerCPU::copySrcTranslate(Addr src)
{
    panic("Unimplemented!");
}

Fault
CheckerCPU::copy(Addr dest)
{
    panic("Unimplemented!");
}

template <class T>
Fault
CheckerCPU::read(Addr addr, T &data, unsigned flags)
{
    memReq->reset(addr, sizeof(T), flags);

    // translate to physical address
    translateDataReadReq(memReq);

    memReq->cmd = Read;
    memReq->completionEvent = NULL;
    memReq->time = curTick;
    memReq->flags &= ~INST_READ;

    if (!(memReq->flags & UNCACHEABLE)) {
        // Access memory to see if we have the same data
        cpuXC->read(memReq, data);
    } else {
        // Assume the data is correct if it's an uncached access
        memcpy(&data, &unverifiedResult.integer, sizeof(T));
    }

    return NoFault;
}

#ifndef DOXYGEN_SHOULD_SKIP_THIS

template
Fault
CheckerCPU::read(Addr addr, uint64_t &data, unsigned flags);

template
Fault
CheckerCPU::read(Addr addr, uint32_t &data, unsigned flags);

template
Fault
CheckerCPU::read(Addr addr, uint16_t &data, unsigned flags);

template
Fault
CheckerCPU::read(Addr addr, uint8_t &data, unsigned flags);

#endif //DOXYGEN_SHOULD_SKIP_THIS

template<>
Fault
CheckerCPU::read(Addr addr, double &data, unsigned flags)
{
    return read(addr, *(uint64_t*)&data, flags);
}

template<>
Fault
CheckerCPU::read(Addr addr, float &data, unsigned flags)
{
    return read(addr, *(uint32_t*)&data, flags);
}

template<>
Fault
CheckerCPU::read(Addr addr, int32_t &data, unsigned flags)
{
    return read(addr, (uint32_t&)data, flags);
}

template <class T>
Fault
CheckerCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
{
    memReq->reset(addr, sizeof(T), flags);

    // translate to physical address
    cpuXC->translateDataWriteReq(memReq);

    // Can compare the write data and result only if it's cacheable,
    // not a store conditional, or is a store conditional that
    // succeeded.
    // @todo: Verify that actual memory matches up with these values.
    // Right now it only verifies that the instruction data is the
    // same as what was in the request that got sent to memory; there
    // is no verification that it is the same as what is in memory.
    // This is because the LSQ would have to be snooped in the CPU to
    // verify this data.
    if (unverifiedReq &&
        !(unverifiedReq->flags & UNCACHEABLE) &&
        (!(unverifiedReq->flags & LOCKED) ||
         ((unverifiedReq->flags & LOCKED) &&
          unverifiedReq->result == 1))) {
#if 0
        memReq->cmd = Read;
        memReq->completionEvent = NULL;
        memReq->time = curTick;
        memReq->flags &= ~INST_READ;
        cpuXC->read(memReq, inst_data);
#endif
        T inst_data;
        memcpy(&inst_data, unverifiedReq->data, sizeof(T));

        if (data != inst_data) {
            warn("%lli: Store value does not match value in memory! "
                 "Instruction: %#x, memory: %#x",
                 curTick, inst_data, data);
            handleError();
        }
    }

    // Assume the result was the same as the one passed in.  This checker
    // doesn't check if the SC should succeed or fail, it just checks the
    // value.
    if (res)
        *res = unverifiedReq->result;

    return NoFault;
}


#ifndef DOXYGEN_SHOULD_SKIP_THIS
template
Fault
CheckerCPU::write(uint64_t data, Addr addr, unsigned flags, uint64_t *res);

template
Fault
CheckerCPU::write(uint32_t data, Addr addr, unsigned flags, uint64_t *res);

template
Fault
CheckerCPU::write(uint16_t data, Addr addr, unsigned flags, uint64_t *res);

template
Fault
CheckerCPU::write(uint8_t data, Addr addr, unsigned flags, uint64_t *res);

#endif //DOXYGEN_SHOULD_SKIP_THIS

template<>
Fault
CheckerCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
{
    return write(*(uint64_t*)&data, addr, flags, res);
}

template<>
Fault
CheckerCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
{
    return write(*(uint32_t*)&data, addr, flags, res);
}

template<>
Fault
CheckerCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
{
    return write((uint32_t)data, addr, flags, res);
}


#if FULL_SYSTEM
Addr
CheckerCPU::dbg_vtophys(Addr addr)
{
    return vtophys(xcProxy, addr);
}
#endif // FULL_SYSTEM

bool
CheckerCPU::translateInstReq(MemReqPtr &req)
{
#if FULL_SYSTEM
    return (cpuXC->translateInstReq(req) == NoFault);
#else
    cpuXC->translateInstReq(req);
    return true;
#endif
}

void
CheckerCPU::translateDataReadReq(MemReqPtr &req)
{
    cpuXC->translateDataReadReq(req);

    if (!unverifiedReq) {
        warn("%lli: Request virtual addresses do not match! Inst: N/A, "
             "checker: %#x",
             curTick, req->vaddr);
        return;
    } else if (req->vaddr != unverifiedReq->vaddr) {
        warn("%lli: Request virtual addresses do not match! Inst: %#x, "
             "checker: %#x",
             curTick, unverifiedReq->vaddr, req->vaddr);
        handleError();
    }
    req->paddr = unverifiedReq->paddr;

    if (checkFlags(req)) {
        warn("%lli: Request flags do not match! Inst: %#x, checker: %#x",
             curTick, unverifiedReq->flags, req->flags);
        handleError();
    }
}

void
CheckerCPU::translateDataWriteReq(MemReqPtr &req)
{
    cpuXC->translateDataWriteReq(req);

    if (!unverifiedReq) {
        warn("%lli: Request virtual addresses do not match! Inst: N/A, "
             "checker: %#x",
             curTick, req->vaddr);
        return;
    } else if (req->vaddr != unverifiedReq->vaddr) {
        warn("%lli: Request virtual addresses do not match! Inst: %#x, "
             "checker: %#x",
             curTick, unverifiedReq->vaddr, req->vaddr);
        handleError();
    }
    req->paddr = unverifiedReq->paddr;

    if (checkFlags(req)) {
        warn("%lli: Request flags do not match! Inst: %#x, checker: %#x",
             curTick, unverifiedReq->flags, req->flags);
        handleError();
    }
}

bool
CheckerCPU::checkFlags(MemReqPtr &req)
{
    // Remove any dynamic flags that don't have to do with the request itself.
    unsigned flags = unverifiedReq->flags;
    unsigned mask = LOCKED | PHYSICAL | VPTE | ALTMODE | UNCACHEABLE | NO_FAULT;
    flags = flags & (mask);
    if (flags == req->flags) {
        return false;
    } else {
        return true;
    }
}

template <class DynInstPtr>
void
Checker<DynInstPtr>::tick(DynInstPtr &completed_inst)
{
    DynInstPtr inst;

    // Either check this instruction, or add it to a list of
    // instructions waiting to be checked.  Instructions must be
    // checked in program order, so if a store has committed yet not
    // completed, there may be some instructions that are waiting
    // behind it that have completed and must be checked.
    if (!instList.empty()) {
        if (youngestSN < completed_inst->seqNum) {
            DPRINTF(Checker, "Adding instruction [sn:%lli] PC:%#x to list.\n",
                    completed_inst->seqNum, completed_inst->readPC());
            instList.push_back(completed_inst);
            youngestSN = completed_inst->seqNum;
        }

        if (!instList.front()->isCompleted()) {
            return;
        } else {
            inst = instList.front();
            instList.pop_front();
        }
    } else {
        if (!completed_inst->isCompleted()) {
            if (youngestSN < completed_inst->seqNum) {
                DPRINTF(Checker, "Adding instruction [sn:%lli] PC:%#x to list.\n",
                        completed_inst->seqNum, completed_inst->readPC());
                instList.push_back(completed_inst);
                youngestSN = completed_inst->seqNum;
            }
            return;
        } else {
            if (youngestSN < completed_inst->seqNum) {
                inst = completed_inst;
                youngestSN = completed_inst->seqNum;
            } else {
                return;
            }
        }
    }

    unverifiedInst = inst;

    // Try to check all instructions that are completed, ending if we
    // run out of instructions to check or if an instruction is not
    // yet completed.
    while (1) {
        DPRINTF(Checker, "Processing instruction [sn:%lli] PC:%#x.\n",
                inst->seqNum, inst->readPC());
        unverifiedResult.integer = inst->readIntResult();
        unverifiedReq = inst->req;
        numCycles++;

        Fault fault = NoFault;

        // maintain $r0 semantics
        cpuXC->setIntReg(ZeroReg, 0);
#ifdef TARGET_ALPHA
        cpuXC->setFloatRegDouble(ZeroReg, 0.0);
#endif // TARGET_ALPHA

        // Check if any recent PC changes match up with anything we
        // expect to happen.  This is mostly to check if traps or
        // PC-based events have occurred in both the checker and CPU.
        if (changedPC) {
            DPRINTF(Checker, "Changed PC recently to %#x\n",
                    cpuXC->readPC());
            if (willChangePC) {
                if (newPC == cpuXC->readPC()) {
                    DPRINTF(Checker, "Changed PC matches expected PC\n");
                } else {
                    warn("%lli: Changed PC does not match expected PC, "
                         "changed: %#x, expected: %#x",
                         curTick, cpuXC->readPC(), newPC);
                    handleError();
                }
                willChangePC = false;
            }
            changedPC = false;
        }
        if (changedNextPC) {
            DPRINTF(Checker, "Changed NextPC recently to %#x\n",
                    cpuXC->readNextPC());
            changedNextPC = false;
        }

        // Try to fetch the instruction

#if FULL_SYSTEM
#define IFETCH_FLAGS(pc)	((pc) & 1) ? PHYSICAL : 0
#else
#define IFETCH_FLAGS(pc)	0
#endif

        // set up memory request for instruction fetch
        memReq->cmd = Read;
        memReq->reset(cpuXC->readPC() & ~3, sizeof(uint32_t),
                      IFETCH_FLAGS(cpuXC->readPC()));

        bool succeeded = translateInstReq(memReq);

        if (!succeeded) {
            if (inst->getFault() == NoFault) {
                // In this case the instruction was not a dummy
                // instruction carrying an ITB fault.  In the single
                // threaded case the ITB should still be able to
                // translate this instruction; in the SMT case it's
                // possible that its ITB entry was kicked out.
                warn("%lli: Instruction PC %#x was not found in the ITB!",
                     curTick, cpuXC->readPC());
                handleError();

                // go to the next instruction
                cpuXC->setPC(cpuXC->readNextPC());
                cpuXC->setNextPC(cpuXC->readNextPC() + sizeof(MachInst));

                break;
            } else {
                // The instruction is carrying an ITB fault.  Handle
                // the fault and see if our results match the CPU on
                // the next tick().
                fault = inst->getFault();
            }
        }

        if (fault == NoFault) {
            cpuXC->mem->read(memReq, machInst);

            // keep an instruction count
            numInst++;

            // decode the instruction
            machInst = gtoh(machInst);
            // Checks that the instruction matches what we expected it to be.
            // Checks both the machine instruction and the PC.
            validateInst(inst);

            curStaticInst = StaticInst::decode(makeExtMI(machInst,
                                                         cpuXC->readPC()));

#if FULL_SYSTEM
            cpuXC->setInst(machInst);
#endif // FULL_SYSTEM

            fault = inst->getFault();
        }

        // Either the instruction was a fault and we should process the fault,
        // or we should just go ahead execute the instruction.  This assumes
        // that the instruction is properly marked as a fault.
        if (fault == NoFault) {

            cpuXC->func_exe_inst++;

            if (!inst->isUnverifiable())
                fault = curStaticInst->execute(this, NULL);

            // Checks to make sure instrution results are correct.
            validateExecution(inst);

            if (curStaticInst->isLoad()) {
                ++numLoad;
            }
        }

        if (fault != NoFault) {
#if FULL_SYSTEM
            fault->invoke(xcProxy);
            willChangePC = true;
            newPC = cpuXC->readPC();
            DPRINTF(Checker, "Fault, PC is now %#x\n", newPC);
#else // !FULL_SYSTEM
            fatal("fault (%d) detected @ PC 0x%08p", fault, cpuXC->readPC());
#endif // FULL_SYSTEM
        } else {
#if THE_ISA != MIPS_ISA
            // go to the next instruction
            cpuXC->setPC(cpuXC->readNextPC());
            cpuXC->setNextPC(cpuXC->readNextPC() + sizeof(MachInst));
#else
            // go to the next instruction
            cpuXC->setPC(cpuXC->readNextPC());
            cpuXC->setNextPC(cpuXC->readNextNPC());
            cpuXC->setNextNPC(cpuXC->readNextNPC() + sizeof(MachInst));
#endif

        }

#if FULL_SYSTEM
        // @todo: Determine if these should happen only if the
        // instruction hasn't faulted.  In the SimpleCPU case this may
        // not be true, but in the O3 or Ozone case this may be true.
        Addr oldpc;
        int count = 0;
        do {
            oldpc = cpuXC->readPC();
            system->pcEventQueue.service(xcProxy);
            count++;
        } while (oldpc != cpuXC->readPC());
        if (count > 1) {
            willChangePC = true;
            newPC = cpuXC->readPC();
            DPRINTF(Checker, "PC Event, PC is now %#x\n", newPC);
        }
#endif

        // @todo:  Optionally can check all registers. (Or just those
        // that have been modified).
        validateState();

        // Continue verifying instructions if there's another completed
        // instruction waiting to be verified.
        if (instList.empty()) {
            break;
        } else if (instList.front()->isCompleted()) {
            inst = instList.front();
            instList.pop_front();
        } else {
            break;
        }
    }
    unverifiedInst = NULL;
}

template <class DynInstPtr>
void
Checker<DynInstPtr>::switchOut(Sampler *s)
{
    instList.clear();
}

template <class DynInstPtr>
void
Checker<DynInstPtr>::takeOverFrom(BaseCPU *oldCPU)
{
}

template <class DynInstPtr>
void
Checker<DynInstPtr>::validateInst(DynInstPtr &inst)
{
    if (inst->readPC() != cpuXC->readPC()) {
        warn("%lli: PCs do not match! Inst: %#x, checker: %#x",
             curTick, inst->readPC(), cpuXC->readPC());
        if (changedPC) {
            warn("%lli: Changed PCs recently, may not be an error",
                 curTick);
        } else {
            handleError();
        }
    }

    MachInst mi = static_cast<MachInst>(inst->staticInst->machInst);

    if (mi != machInst) {
        warn("%lli: Binary instructions do not match! Inst: %#x, "
             "checker: %#x",
             curTick, mi, machInst);
        handleError();
    }
}

template <class DynInstPtr>
void
Checker<DynInstPtr>::validateExecution(DynInstPtr &inst)
{
    if (inst->numDestRegs()) {
        // @todo: Support more destination registers.
        if (inst->isUnverifiable()) {
            // Unverifiable instructions assume they were executed
            // properly by the CPU. Grab the result from the
            // instruction and write it to the register.
            RegIndex idx = inst->destRegIdx(0);
            if (idx < TheISA::FP_Base_DepTag) {
                cpuXC->setIntReg(idx, inst->readIntResult());
            } else if (idx < TheISA::Fpcr_DepTag) {
                cpuXC->setFloatRegInt(idx, inst->readIntResult());
            } else {
                cpuXC->setMiscReg(idx, inst->readIntResult());
            }
        } else if (result.integer != inst->readIntResult()) {
            warn("%lli: Instruction results do not match! (Results may not "
                 "actually be integers) Inst: %#x, checker: %#x",
                 curTick, inst->readIntResult(), result.integer);
            handleError();
        }
    }

    if (inst->readNextPC() != cpuXC->readNextPC()) {
        warn("%lli: Instruction next PCs do not match! Inst: %#x, "
             "checker: %#x",
             curTick, inst->readNextPC(), cpuXC->readNextPC());
        handleError();
    }

    // Checking side effect registers can be difficult if they are not
    // checked simultaneously with the execution of the instruction.
    // This is because other valid instructions may have modified
    // these registers in the meantime, and their values are not
    // stored within the DynInst.
    while (!miscRegIdxs.empty()) {
        int misc_reg_idx = miscRegIdxs.front();
        miscRegIdxs.pop();

        if (inst->xcBase()->readMiscReg(misc_reg_idx) !=
            cpuXC->readMiscReg(misc_reg_idx)) {
            warn("%lli: Misc reg idx %i (side effect) does not match! "
                 "Inst: %#x, checker: %#x",
                 curTick, misc_reg_idx,
                 inst->xcBase()->readMiscReg(misc_reg_idx),
                 cpuXC->readMiscReg(misc_reg_idx));
            handleError();
        }
    }
}

template <class DynInstPtr>
void
Checker<DynInstPtr>::validateState()
{
    if (updateThisCycle) {
        warn("%lli: Instruction PC %#x results didn't match up, copying all "
             "registers from main CPU", unverifiedInst->readPC());
        // Heavy-weight copying of all registers
        cpuXC->copyArchRegs(unverifiedInst->xcBase());
        updateThisCycle = false;
    }
}

template <class DynInstPtr>
void
Checker<DynInstPtr>::dumpInsts()
{
    int num = 0;

    InstListIt inst_list_it = --(instList.end());

    cprintf("Inst list size: %i\n", instList.size());

    while (inst_list_it != instList.end())
    {
        cprintf("Instruction:%i\n",
                num);

        cprintf("PC:%#x\n[sn:%lli]\n[tid:%i]\n"
                "Completed:%i\n",
                (*inst_list_it)->readPC(),
                (*inst_list_it)->seqNum,
                (*inst_list_it)->threadNumber,
                (*inst_list_it)->isCompleted());

        cprintf("\n");

        inst_list_it--;
        ++num;
    }

}

template
class Checker<RefCountingPtr<OzoneDynInst<OzoneImpl> > >;

template
class Checker<RefCountingPtr<AlphaDynInst<AlphaSimpleImpl> > >;