summaryrefslogtreecommitdiff
path: root/cpu/cpu_exec_context.hh
blob: eb5d712b9ba1356ec1061d4e78cd39ddef3ac2a8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
/*
 * Copyright (c) 2001-2006 The Regents of The University of Michigan
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#ifndef __CPU_CPU_EXEC_CONTEXT_HH__
#define __CPU_CPU_EXEC_CONTEXT_HH__

#include "arch/isa_traits.hh"
#include "config/full_system.hh"
#include "cpu/exec_context.hh"
#include "mem/physical.hh"
#include "mem/request.hh"
#include "sim/byteswap.hh"
#include "sim/eventq.hh"
#include "sim/host.hh"
#include "sim/serialize.hh"

class BaseCPU;

#if FULL_SYSTEM

#include "sim/system.hh"
#include "arch/tlb.hh"

class FunctionProfile;
class ProfileNode;
class FunctionalPort;
class PhysicalPort;


#else // !FULL_SYSTEM

#include "sim/process.hh"
#include "mem/page_table.hh"
class TranslatingPort;


#endif // FULL_SYSTEM

//
// The CPUExecContext object represents a functional context for
// instruction execution.  It incorporates everything required for
// architecture-level functional simulation of a single thread.
//

class CPUExecContext
{
  protected:
    typedef TheISA::RegFile RegFile;
    typedef TheISA::MachInst MachInst;
    typedef TheISA::MiscRegFile MiscRegFile;
    typedef TheISA::MiscReg MiscReg;
    typedef TheISA::FloatReg FloatReg;
    typedef TheISA::FloatRegBits FloatRegBits;
  public:
    typedef ExecContext::Status Status;

  private:
    Status _status;

  public:
    Status status() const { return _status; }

    void setStatus(Status newStatus) { _status = newStatus; }

    /// Set the status to Active.  Optional delay indicates number of
    /// cycles to wait before beginning execution.
    void activate(int delay = 1);

    /// Set the status to Suspended.
    void suspend();

    /// Set the status to Unallocated.
    void deallocate();

    /// Set the status to Halted.
    void halt();

  protected:
    RegFile regs;	// correct-path register context

  public:
    // pointer to CPU associated with this context
    BaseCPU *cpu;

    ProxyExecContext<CPUExecContext> *proxy;

    // Current instruction
    MachInst inst;

    // Index of hardware thread context on the CPU that this represents.
    int thread_num;

    // ID of this context w.r.t. the System or Process object to which
    // it belongs.  For full-system mode, this is the system CPU ID.
    int cpu_id;

    Tick lastActivate;
    Tick lastSuspend;

    System *system;


#if FULL_SYSTEM
    AlphaITB *itb;
    AlphaDTB *dtb;

    /** A functional port outgoing only for functional accesses to physical
     * addresses.*/
    FunctionalPort *physPort;

    /** A functional port, outgoing only, for functional accesse to virtual
     * addresses. That doen't require execution context information */
    VirtualPort *virtPort;

    FunctionProfile *profile;
    ProfileNode *profileNode;
    Addr profilePC;
    void dumpFuncProfile();

    /** Event for timing out quiesce instruction */
    struct EndQuiesceEvent : public Event
    {
        /** A pointer to the execution context that is quiesced */
        CPUExecContext *cpuXC;

        EndQuiesceEvent(CPUExecContext *_cpuXC);

        /** Event process to occur at interrupt*/
        virtual void process();

        /** Event description */
        virtual const char *description();
    };
    EndQuiesceEvent quiesceEvent;

    Event *getQuiesceEvent() { return &quiesceEvent; }

    Tick readLastActivate() { return lastActivate; }

    Tick readLastSuspend() { return lastSuspend; }

    void profileClear();

    void profileSample();

#else
    /// Port that syscalls can use to access memory (provides translation step).
    TranslatingPort *port;

    Process *process;

    // Address space ID.  Note that this is used for TIMING cache
    // simulation only; all functional memory accesses should use
    // one of the FunctionalMemory pointers above.
    short asid;

#endif

    /**
     * Temporary storage to pass the source address from copy_load to
     * copy_store.
     * @todo Remove this temporary when we have a better way to do it.
     */
    Addr copySrcAddr;
    /**
     * Temp storage for the physical source address of a copy.
     * @todo Remove this temporary when we have a better way to do it.
     */
    Addr copySrcPhysAddr;


    /*
     * number of executed instructions, for matching with syscall trace
     * points in EIO files.
     */
    Counter func_exe_inst;

    //
    // Count failed store conditionals so we can warn of apparent
    // application deadlock situations.
    unsigned storeCondFailures;

    // constructor: initialize context from given process structure
#if FULL_SYSTEM
    CPUExecContext(BaseCPU *_cpu, int _thread_num, System *_system,
                   AlphaITB *_itb, AlphaDTB *_dtb);
#else
    CPUExecContext(BaseCPU *_cpu, int _thread_num, Process *_process, int _asid,
            MemObject *memobj);
    // Constructor to use XC to pass reg file around.  Not used for anything
    // else.
    CPUExecContext(RegFile *regFile);
#endif
    virtual ~CPUExecContext();

    virtual void takeOverFrom(ExecContext *oldContext);

    void regStats(const std::string &name);

    void serialize(std::ostream &os);
    void unserialize(Checkpoint *cp, const std::string &section);

    BaseCPU *getCpuPtr() { return cpu; }

    ExecContext *getProxy() { return proxy; }

    int getThreadNum() { return thread_num; }

#if FULL_SYSTEM
    System *getSystemPtr() { return system; }

    AlphaITB *getITBPtr() { return itb; }

    AlphaDTB *getDTBPtr() { return dtb; }

    int getInstAsid() { return regs.instAsid(); }
    int getDataAsid() { return regs.dataAsid(); }

    Fault translateInstReq(RequestPtr &req)
    {
        return itb->translate(req, proxy);
    }

    Fault translateDataReadReq(RequestPtr &req)
    {
        return dtb->translate(req, proxy, false);
    }

    Fault translateDataWriteReq(RequestPtr &req)
    {
        return dtb->translate(req, proxy, true);
    }

    FunctionalPort *getPhysPort() { return physPort; }

    /** Return a virtual port. If no exec context is specified then a static
     * port is returned. Otherwise a port is created and returned. It must be
     * deleted by deleteVirtPort(). */
    VirtualPort *getVirtPort(ExecContext *xc);

    void delVirtPort(VirtualPort *vp);

#else
    TranslatingPort *getMemPort() { return port; }

    Process *getProcessPtr() { return process; }

    int getInstAsid() { return asid; }
    int getDataAsid() { return asid; }

    Fault translateInstReq(RequestPtr &req)
    {
        return process->pTable->translate(req);
    }

    Fault translateDataReadReq(RequestPtr &req)
    {
        return process->pTable->translate(req);
    }

    Fault translateDataWriteReq(RequestPtr &req)
    {
        return process->pTable->translate(req);
    }

#endif

/*
    template <class T>
    Fault read(RequestPtr &req, T &data)
    {
#if FULL_SYSTEM && THE_ISA == ALPHA_ISA
        if (req->flags & LOCKED) {
            req->xc->setMiscReg(TheISA::Lock_Addr_DepTag, req->paddr);
            req->xc->setMiscReg(TheISA::Lock_Flag_DepTag, true);
        }
#endif

        Fault error;
        error = mem->prot_read(req->paddr, data, req->size);
        data = LittleEndianGuest::gtoh(data);
        return error;
    }

    template <class T>
    Fault write(RequestPtr &req, T &data)
    {
#if FULL_SYSTEM && THE_ISA == ALPHA_ISA
        ExecContext *xc;

        // If this is a store conditional, act appropriately
        if (req->flags & LOCKED) {
            xc = req->xc;

            if (req->flags & UNCACHEABLE) {
                // Don't update result register (see stq_c in isa_desc)
                req->result = 2;
                xc->setStCondFailures(0);//Needed? [RGD]
            } else {
                bool lock_flag = xc->readMiscReg(TheISA::Lock_Flag_DepTag);
                Addr lock_addr = xc->readMiscReg(TheISA::Lock_Addr_DepTag);
                req->result = lock_flag;
                if (!lock_flag ||
                    ((lock_addr & ~0xf) != (req->paddr & ~0xf))) {
                    xc->setMiscReg(TheISA::Lock_Flag_DepTag, false);
                    xc->setStCondFailures(xc->readStCondFailures() + 1);
                    if (((xc->readStCondFailures()) % 100000) == 0) {
                        std::cerr << "Warning: "
                                  << xc->readStCondFailures()
                                  << " consecutive store conditional failures "
                                  << "on cpu " << req->xc->readCpuId()
                                  << std::endl;
                    }
                    return NoFault;
                }
                else xc->setStCondFailures(0);
            }
        }

        // Need to clear any locked flags on other proccessors for
        // this address.  Only do this for succsful Store Conditionals
        // and all other stores (WH64?).  Unsuccessful Store
        // Conditionals would have returned above, and wouldn't fall
        // through.
        for (int i = 0; i < system->execContexts.size(); i++){
            xc = system->execContexts[i];
            if ((xc->readMiscReg(TheISA::Lock_Addr_DepTag) & ~0xf) ==
                (req->paddr & ~0xf)) {
                xc->setMiscReg(TheISA::Lock_Flag_DepTag, false);
            }
        }

#endif
        return mem->prot_write(req->paddr, (T)htog(data), req->size);
    }
*/
    virtual bool misspeculating();


    MachInst getInst() { return inst; }

    void setInst(MachInst new_inst)
    {
        inst = new_inst;
    }

    Fault instRead(RequestPtr &req)
    {
        panic("instRead not implemented");
        // return funcPhysMem->read(req, inst);
        return NoFault;
    }

    void setCpuId(int id) { cpu_id = id; }

    int readCpuId() { return cpu_id; }

    void copyArchRegs(ExecContext *xc);

    //
    // New accessors for new decoder.
    //
    uint64_t readIntReg(int reg_idx)
    {
        return regs.readIntReg(reg_idx);
    }

    FloatReg readFloatReg(int reg_idx, int width)
    {
        return regs.readFloatReg(reg_idx, width);
    }

    FloatReg readFloatReg(int reg_idx)
    {
        return regs.readFloatReg(reg_idx);
    }

    FloatRegBits readFloatRegBits(int reg_idx, int width)
    {
        return regs.readFloatRegBits(reg_idx, width);
    }

    FloatRegBits readFloatRegBits(int reg_idx)
    {
        return regs.readFloatRegBits(reg_idx);
    }

    void setIntReg(int reg_idx, uint64_t val)
    {
        regs.setIntReg(reg_idx, val);
    }

    void setFloatReg(int reg_idx, FloatReg val, int width)
    {
        regs.setFloatReg(reg_idx, val, width);
    }

    void setFloatReg(int reg_idx, FloatReg val)
    {
        regs.setFloatReg(reg_idx, val);
    }

    void setFloatRegBits(int reg_idx, FloatRegBits val, int width)
    {
        regs.setFloatRegBits(reg_idx, val, width);
    }

    void setFloatRegBits(int reg_idx, FloatRegBits val)
    {
        regs.setFloatRegBits(reg_idx, val);
    }

    uint64_t readPC()
    {
        return regs.readPC();
    }

    void setPC(uint64_t val)
    {
        regs.setPC(val);
    }

    uint64_t readNextPC()
    {
        return regs.readNextPC();
    }

    void setNextPC(uint64_t val)
    {
        regs.setNextPC(val);
    }

    uint64_t readNextNPC()
    {
        return regs.readNextNPC();
    }

    void setNextNPC(uint64_t val)
    {
        regs.setNextNPC(val);
    }


    MiscReg readMiscReg(int misc_reg)
    {
        return regs.readMiscReg(misc_reg);
    }

    MiscReg readMiscRegWithEffect(int misc_reg, Fault &fault)
    {
        return regs.readMiscRegWithEffect(misc_reg, fault, proxy);
    }

    Fault setMiscReg(int misc_reg, const MiscReg &val)
    {
        return regs.setMiscReg(misc_reg, val);
    }

    Fault setMiscRegWithEffect(int misc_reg, const MiscReg &val)
    {
        return regs.setMiscRegWithEffect(misc_reg, val, proxy);
    }

    unsigned readStCondFailures() { return storeCondFailures; }

    void setStCondFailures(unsigned sc_failures)
    { storeCondFailures = sc_failures; }

    void clearArchRegs() { regs.clear(); }

#if FULL_SYSTEM
    int readIntrFlag() { return regs.intrflag; }
    void setIntrFlag(int val) { regs.intrflag = val; }
    Fault hwrei();
    bool inPalMode() { return AlphaISA::PcPAL(regs.readPC()); }
    bool simPalCheck(int palFunc);
#endif

#if !FULL_SYSTEM
    TheISA::IntReg getSyscallArg(int i)
    {
        return regs.readIntReg(TheISA::ArgumentReg0 + i);
    }

    // used to shift args for indirect syscall
    void setSyscallArg(int i, TheISA::IntReg val)
    {
        regs.setIntReg(TheISA::ArgumentReg0 + i, val);
    }

    void setSyscallReturn(SyscallReturn return_value)
    {
        TheISA::setSyscallReturn(return_value, &regs);
    }

    void syscall()
    {
        process->syscall(proxy);
    }

    Counter readFuncExeInst() { return func_exe_inst; }

    void setFuncExeInst(Counter new_val) { func_exe_inst = new_val; }
#endif

    void changeRegFileContext(RegFile::ContextParam param,
            RegFile::ContextVal val)
    {
        regs.changeContext(param, val);
    }
};


// for non-speculative execution context, spec_mode is always false
inline bool
CPUExecContext::misspeculating()
{
    return false;
}

#endif // __CPU_CPU_EXEC_CONTEXT_HH__