summaryrefslogtreecommitdiff
path: root/cpu/o3/alpha_cpu_impl.hh
blob: 7a2d5d2b9e21c1289e0e3dfb91f0fc7f5df68d1f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
/*
 * Copyright (c) 2004-2005 The Regents of The University of Michigan
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "arch/alpha/faults.hh"
#include "base/cprintf.hh"
#include "base/statistics.hh"
#include "base/timebuf.hh"
#include "cpu/quiesce_event.hh"
#include "mem/cache/cache.hh" // for dynamic cast
#include "mem/mem_interface.hh"
#include "sim/builder.hh"
#include "sim/sim_events.hh"
#include "sim/stats.hh"

#include "cpu/o3/alpha_cpu.hh"
#include "cpu/o3/alpha_params.hh"
#include "cpu/o3/comm.hh"
#include "cpu/o3/thread_state.hh"

#if FULL_SYSTEM
#include "arch/alpha/osfpal.hh"
#include "arch/isa_traits.hh"
#endif

using namespace TheISA;

template <class Impl>
AlphaFullCPU<Impl>::AlphaFullCPU(Params *params)
#if FULL_SYSTEM
    : FullO3CPU<Impl>(params), itb(params->itb), dtb(params->dtb)
#else
    : FullO3CPU<Impl>(params)
#endif
{
    DPRINTF(FullCPU, "AlphaFullCPU: Creating AlphaFullCPU object.\n");

    this->thread.resize(this->numThreads);

    for (int i = 0; i < this->numThreads; ++i) {
#if FULL_SYSTEM
        assert(i == 0);
        this->thread[i] = new Thread(this, 0, params->mem);
//        this->system->execContexts[i] = this->thread[i]->getXCProxy();
        this->thread[i]->setStatus(ExecContext::Suspended);

#else
        if (i < params->workload.size()) {
            DPRINTF(FullCPU, "FullCPU: Workload[%i]'s starting PC is %#x, "
                    "process is %#x",
                    i, params->workload[i]->prog_entry, this->thread[i]);
            this->thread[i] = new Thread(this, i, params->workload[i], i);
            assert(params->workload[i]->getMemory() != NULL);

            this->thread[i]->setStatus(ExecContext::Suspended);
            //usedTids[i] = true;
            //threadMap[i] = i;
        } else {
            //Allocate Empty execution context so M5 can use later
            //when scheduling threads to CPU
            Process* dummy_proc = NULL;

            this->thread[i] = new Thread(this, i, dummy_proc, i);
            //usedTids[i] = false;
        }
#endif // !FULL_SYSTEM

        this->thread[i]->numInst = 0;

        xcProxies.push_back(new AlphaXC);

        xcProxies[i]->cpu = this;
        xcProxies[i]->thread = this->thread[i];

        xcProxies[i]->quiesceEvent = new EndQuiesceEvent(xcProxies[i]);
        xcProxies[i]->lastActivate = 0;
        xcProxies[i]->lastSuspend = 0;


        this->thread[i]->xcProxy = xcProxies[i];

        this->execContexts.push_back(this->thread[i]->getXCProxy());
    }


    for (int i=0; i < this->numThreads; i++) {
        this->thread[i]->funcExeInst = 0;
    }

    // Sets CPU pointers. These must be set at this level because the CPU
    // pointers are defined to be the highest level of CPU class.
    this->fetch.setCPU(this);
    this->decode.setCPU(this);
    this->rename.setCPU(this);
    this->iew.setCPU(this);
    this->commit.setCPU(this);

    this->rob.setCPU(this);
    this->regFile.setCPU(this);

    lockAddr = 0;
    lockFlag = false;
}

template <class Impl>
void
AlphaFullCPU<Impl>::regStats()
{
    // Register stats for everything that has stats.
    this->fullCPURegStats();
    this->fetch.regStats();
    this->decode.regStats();
    this->rename.regStats();
    this->iew.regStats();
    this->commit.regStats();
}

#if FULL_SYSTEM
template <class Impl>
void
AlphaFullCPU<Impl>::AlphaXC::dumpFuncProfile()
{
}
#endif

template <class Impl>
void
AlphaFullCPU<Impl>::AlphaXC::takeOverFrom(ExecContext *old_context)
{
    // some things should already be set up
    assert(getMemPtr() == old_context->getMemPtr());
#if FULL_SYSTEM
    assert(getSystemPtr() == old_context->getSystemPtr());
#else
    assert(getProcessPtr() == old_context->getProcessPtr());
#endif

    // copy over functional state
    setStatus(old_context->status());
    copyArchRegs(old_context);
    setCpuId(old_context->readCpuId());
#if !FULL_SYSTEM
    thread->funcExeInst = old_context->readFuncExeInst();
#endif

    old_context->setStatus(ExecContext::Unallocated);

    thread->inSyscall = false;
    thread->trapPending = false;
}

template <class Impl>
void
AlphaFullCPU<Impl>::AlphaXC::activate(int delay)
{
    DPRINTF(FullCPU, "Calling activate on AlphaXC\n");
//    warn("Calling activate on AlphaXC");
    if (thread->status() == ExecContext::Active)
        return;

    lastActivate = curTick;

    if (thread->status() == ExecContext::Unallocated) {
        cpu->activateWhenReady(thread->tid);
        return;
    }

    thread->setStatus(ExecContext::Active);

    // status() == Suspended
    cpu->activateContext(thread->tid, delay);
}

template <class Impl>
void
AlphaFullCPU<Impl>::AlphaXC::suspend()
{
    DPRINTF(FullCPU, "Calling suspend on AlphaXC\n");
//    warn("Calling suspend on AlphaXC");
    if (thread->status() == ExecContext::Suspended)
        return;

    lastActivate = curTick;
    lastSuspend = curTick;
/*
#if FULL_SYSTEM
    // Don't change the status from active if there are pending interrupts
    if (cpu->check_interrupts()) {
        assert(status() == ExecContext::Active);
        return;
    }
#endif
*/
    thread->setStatus(ExecContext::Suspended);
    cpu->suspendContext(thread->tid);
}

template <class Impl>
void
AlphaFullCPU<Impl>::AlphaXC::deallocate()
{
    DPRINTF(FullCPU, "Calling deallocate on AlphaXC\n");
//    warn("Calling deallocate on AlphaXC");
    if (thread->status() == ExecContext::Unallocated)
        return;

    thread->setStatus(ExecContext::Unallocated);
    cpu->deallocateContext(thread->tid);
}

template <class Impl>
void
AlphaFullCPU<Impl>::AlphaXC::halt()
{
    DPRINTF(FullCPU, "Calling halt on AlphaXC\n");
//    warn("Calling halt on AlphaXC");
    if (thread->status() == ExecContext::Halted)
        return;

    thread->setStatus(ExecContext::Halted);
    cpu->haltContext(thread->tid);
}

template <class Impl>
void
AlphaFullCPU<Impl>::AlphaXC::regStats(const std::string &name)
{}

template <class Impl>
void
AlphaFullCPU<Impl>::AlphaXC::serialize(std::ostream &os)
{}
template <class Impl>
void
AlphaFullCPU<Impl>::AlphaXC::unserialize(Checkpoint *cp, const std::string &section)
{}

#if FULL_SYSTEM
template <class Impl>
Event *
AlphaFullCPU<Impl>::AlphaXC::getQuiesceEvent()
{
    return quiesceEvent;
}

template <class Impl>
Tick
AlphaFullCPU<Impl>::AlphaXC::readLastActivate()
{
    return lastActivate;
}

template <class Impl>
Tick
AlphaFullCPU<Impl>::AlphaXC::readLastSuspend()
{
    return lastSuspend;
}

template <class Impl>
void
AlphaFullCPU<Impl>::AlphaXC::profileClear()
{}

template <class Impl>
void
AlphaFullCPU<Impl>::AlphaXC::profileSample()
{}
#endif

template <class Impl>
TheISA::MachInst
AlphaFullCPU<Impl>::AlphaXC:: getInst()
{
    return thread->inst;
}

template <class Impl>
void
AlphaFullCPU<Impl>::AlphaXC::copyArchRegs(ExecContext *xc)
{
    // This function will mess things up unless the ROB is empty and
    // there are no instructions in the pipeline.
    unsigned tid = thread->tid;
    PhysRegIndex renamed_reg;

    // First loop through the integer registers.
    for (int i = 0; i < AlphaISA::NumIntRegs; ++i) {
        renamed_reg = cpu->renameMap[tid].lookup(i);

        DPRINTF(FullCPU, "FullCPU: Copying over register %i, had data %lli, "
                "now has data %lli.\n",
                renamed_reg, cpu->readIntReg(renamed_reg),
                xc->readIntReg(i));

        cpu->setIntReg(renamed_reg, xc->readIntReg(i));
    }

    // Then loop through the floating point registers.
    for (int i = 0; i < AlphaISA::NumFloatRegs; ++i) {
        renamed_reg = cpu->renameMap[tid].lookup(i + AlphaISA::FP_Base_DepTag);
        cpu->setFloatRegDouble(renamed_reg,
                               xc->readFloatRegDouble(i));
        cpu->setFloatRegInt(renamed_reg,
                            xc->readFloatRegInt(i));
    }

    // Copy the misc regs.
    cpu->regFile.miscRegs[tid].copyMiscRegs(xc);

    // Then finally set the PC and the next PC.
    cpu->setPC(xc->readPC(), tid);
    cpu->setNextPC(xc->readNextPC(), tid);
#if !FULL_SYSTEM
    this->thread->funcExeInst = xc->readFuncExeInst();
#endif
}

template <class Impl>
void
AlphaFullCPU<Impl>::AlphaXC::clearArchRegs()
{}

//
// New accessors for new decoder.
//
template <class Impl>
uint64_t
AlphaFullCPU<Impl>::AlphaXC::readIntReg(int reg_idx)
{
    DPRINTF(Fault, "Reading int register through the XC!\n");
    return cpu->readArchIntReg(reg_idx, thread->tid);
}

template <class Impl>
float
AlphaFullCPU<Impl>::AlphaXC::readFloatRegSingle(int reg_idx)
{
    DPRINTF(Fault, "Reading float register through the XC!\n");
    return cpu->readArchFloatRegSingle(reg_idx, thread->tid);
}

template <class Impl>
double
AlphaFullCPU<Impl>::AlphaXC::readFloatRegDouble(int reg_idx)
{
    DPRINTF(Fault, "Reading float register through the XC!\n");
    return cpu->readArchFloatRegDouble(reg_idx, thread->tid);
}

template <class Impl>
uint64_t
AlphaFullCPU<Impl>::AlphaXC::readFloatRegInt(int reg_idx)
{
    DPRINTF(Fault, "Reading floatint register through the XC!\n");
    return cpu->readArchFloatRegInt(reg_idx, thread->tid);
}

template <class Impl>
void
AlphaFullCPU<Impl>::AlphaXC::setIntReg(int reg_idx, uint64_t val)
{
    DPRINTF(Fault, "Setting int register through the XC!\n");
    cpu->setArchIntReg(reg_idx, val, thread->tid);

    if (!thread->trapPending && !thread->inSyscall) {
        cpu->squashFromXC(thread->tid);
    }
}

template <class Impl>
void
AlphaFullCPU<Impl>::AlphaXC::setFloatRegSingle(int reg_idx, float val)
{
    DPRINTF(Fault, "Setting float register through the XC!\n");
    cpu->setArchFloatRegSingle(reg_idx, val, thread->tid);

    if (!thread->trapPending && !thread->inSyscall) {
        cpu->squashFromXC(thread->tid);
    }
}

template <class Impl>
void
AlphaFullCPU<Impl>::AlphaXC::setFloatRegDouble(int reg_idx, double val)
{
    DPRINTF(Fault, "Setting float register through the XC!\n");
    cpu->setArchFloatRegDouble(reg_idx, val, thread->tid);

    if (!thread->trapPending && !thread->inSyscall) {
        cpu->squashFromXC(thread->tid);
    }
}

template <class Impl>
void
AlphaFullCPU<Impl>::AlphaXC::setFloatRegInt(int reg_idx, uint64_t val)
{
    DPRINTF(Fault, "Setting floatint register through the XC!\n");
    cpu->setArchFloatRegInt(reg_idx, val, thread->tid);

    if (!thread->trapPending && !thread->inSyscall) {
        cpu->squashFromXC(thread->tid);
    }
}

template <class Impl>
void
AlphaFullCPU<Impl>::AlphaXC::setPC(uint64_t val)
{
    cpu->setPC(val, thread->tid);

    if (!thread->trapPending && !thread->inSyscall) {
        cpu->squashFromXC(thread->tid);
    }
}

template <class Impl>
void
AlphaFullCPU<Impl>::AlphaXC::setNextPC(uint64_t val)
{
    cpu->setNextPC(val, thread->tid);

    if (!thread->trapPending && !thread->inSyscall) {
        cpu->squashFromXC(thread->tid);
    }
}

template <class Impl>
Fault
AlphaFullCPU<Impl>::AlphaXC::setMiscReg(int misc_reg, const MiscReg &val)
{
    DPRINTF(Fault, "Setting misc register through the XC!\n");

    Fault ret_fault = cpu->setMiscReg(misc_reg, val, thread->tid);

    if (!thread->trapPending && !thread->inSyscall) {
        cpu->squashFromXC(thread->tid);
    }

    return ret_fault;
}

template <class Impl>
Fault
AlphaFullCPU<Impl>::AlphaXC::setMiscRegWithEffect(int misc_reg, const MiscReg &val)
{
    DPRINTF(Fault, "Setting misc register through the XC!\n");

    Fault ret_fault = cpu->setMiscRegWithEffect(misc_reg, val, thread->tid);

    if (!thread->trapPending && !thread->inSyscall) {
        cpu->squashFromXC(thread->tid);
    }

    return ret_fault;
}

#if !FULL_SYSTEM

template <class Impl>
TheISA::IntReg
AlphaFullCPU<Impl>::AlphaXC::getSyscallArg(int i)
{
    return cpu->getSyscallArg(i, thread->tid);
}

template <class Impl>
void
AlphaFullCPU<Impl>::AlphaXC::setSyscallArg(int i, IntReg val)
{
    cpu->setSyscallArg(i, val, thread->tid);
}

template <class Impl>
void
AlphaFullCPU<Impl>::AlphaXC::setSyscallReturn(SyscallReturn return_value)
{
    cpu->setSyscallReturn(return_value, thread->tid);
}

template <class Impl>
void
AlphaFullCPU<Impl>::syscall(int tid)
{
    DPRINTF(FullCPU, "AlphaFullCPU: [tid:%i] Executing syscall().\n\n", tid);

    DPRINTF(Activity,"Activity: syscall() called.\n");

    // Temporarily increase this by one to account for the syscall
    // instruction.
    ++(this->thread[tid]->funcExeInst);

    // Execute the actual syscall.
    this->thread[tid]->syscall();

    // Decrease funcExeInst by one as the normal commit will handle
    // incrementing it.
    --(this->thread[tid]->funcExeInst);
}

#endif // FULL_SYSTEM

template <class Impl>
MiscReg
AlphaFullCPU<Impl>::readMiscReg(int misc_reg, unsigned tid)
{
    return this->regFile.readMiscReg(misc_reg, tid);
}

template <class Impl>
MiscReg
AlphaFullCPU<Impl>::readMiscRegWithEffect(int misc_reg, Fault &fault,
                                          unsigned tid)
{
    return this->regFile.readMiscRegWithEffect(misc_reg, fault, tid);
}

template <class Impl>
Fault
AlphaFullCPU<Impl>::setMiscReg(int misc_reg, const MiscReg &val, unsigned tid)
{
    // I think that these registers should always be set, regardless of what
    // mode the thread is in.  The main difference is if the thread needs to
    // squash as a result of the write, which is controlled by the AlphaXC.
//    if (!this->thread[tid]->trapPending) {
        return this->regFile.setMiscReg(misc_reg, val, tid);
//    } else {
//        return NoFault;
//    }
}

template <class Impl>
Fault
AlphaFullCPU<Impl>::setMiscRegWithEffect(int misc_reg, const MiscReg &val,
                                         unsigned tid)
{
//    if (!this->thread[tid]->trapPending) {
        return this->regFile.setMiscRegWithEffect(misc_reg, val, tid);
//    } else {
//        return NoFault;
//    }
}

template <class Impl>
void
AlphaFullCPU<Impl>::squashFromXC(unsigned tid)
{
//    this->thread[tid]->trapPending = true;
    this->thread[tid]->inSyscall = true;
    this->commit.generateXCEvent(tid);
}

#if FULL_SYSTEM

template <class Impl>
void
AlphaFullCPU<Impl>::post_interrupt(int int_num, int index)
{
    BaseCPU::post_interrupt(int_num, index);

    if (this->thread[0]->status() == ExecContext::Suspended) {
        DPRINTF(IPI,"Suspended Processor awoke\n");
        xcProxies[0]->activate();
    }
}

template <class Impl>
int
AlphaFullCPU<Impl>::readIntrFlag()
{
    return this->regFile.readIntrFlag();
}

template <class Impl>
void
AlphaFullCPU<Impl>::setIntrFlag(int val)
{
    this->regFile.setIntrFlag(val);
}

template <class Impl>
Fault
AlphaFullCPU<Impl>::hwrei(unsigned tid)
{
#if 0
    if (!inPalMode(this->readPC(tid)))
        return new AlphaISA::UnimplementedOpcodeFault;

    setNextPC(cpu->readMiscReg(AlphaISA::IPR_EXC_ADDR, tid), tid);

    cpu->kernelStats->hwrei();

//    if ((this->regFile.miscRegs[tid].readReg(AlphaISA::IPR_EXC_ADDR) & 1) == 0)
//        AlphaISA::swap_palshadow(&regs, false);

    cpu->checkInterrupts = true;
#endif
//    panic("Do not call this function!");
    // Need to clear the lock flag upon returning from an interrupt.
    this->lockFlag = false;
    // FIXME: XXX check for interrupts? XXX
    return NoFault;
}

template <class Impl>
bool
AlphaFullCPU<Impl>::simPalCheck(int palFunc)
{
//    kernelStats.callpal(palFunc);

    switch (palFunc) {
      case PAL::halt:
        halt();
        if (--System::numSystemsRunning == 0)
            new SimExitEvent("all cpus halted");
        break;

      case PAL::bpt:
      case PAL::bugchk:
        if (this->system->breakpoint())
            return false;
        break;
    }

    return true;
}

// Probably shouldn't be able to switch to the trap handler as quickly as
// this.  Also needs to get the exception restart address from the commit
// stage.
template <class Impl>
void
AlphaFullCPU<Impl>::trap(Fault fault, unsigned tid)
{

    fault->invoke(this->xcProxies[tid]);
/*    // Keep in mind that a trap may be initiated by fetch if there's a TLB
    // miss
    uint64_t PC = this->commit.readCommitPC();

    DPRINTF(Fault, "Fault %s\n", fault->name());
    this->recordEvent(csprintf("Fault %s", fault->name()));

    //kernelStats.fault(fault);

    if (fault->isA<ArithmeticFault>())
        panic("Arithmetic traps are unimplemented!");

    // exception restart address - Get the commit PC
    if (!fault->isA<InterruptFault>() || !inPalMode(PC))
        this->regFile.miscRegs.setReg(AlphaISA::IPR_EXC_ADDR, PC);

    if (fault->isA<PalFault>() || fault->isA<ArithmeticFault>())
    //    || fault == InterruptFault && !PC_PAL(regs.pc)
        {
        // traps...  skip faulting instruction
        AlphaISA::MiscReg ipr_exc_addr =
            this->regFile.miscRegs.readReg(AlphaISA::IPR_EXC_ADDR);
        this->regFile.miscRegs.setReg(AlphaISA::IPR_EXC_ADDR,
                                      ipr_exc_addr + 4);
    }

    if (!inPalMode(PC))
        swapPALShadow(true);

    this->regFile.setPC(this->regFile.miscRegs.readReg(AlphaISA::IPR_PAL_BASE) +
                         (dynamic_cast<AlphaFault *>(fault.get()))->vect(), 0);
    this->regFile.setNextPC(PC + sizeof(MachInst), 0);*/
}

template <class Impl>
void
AlphaFullCPU<Impl>::processInterrupts()
{
    // Check for interrupts here.  For now can copy the code that
    // exists within isa_fullsys_traits.hh.  Also assume that thread 0
    // is the one that handles the interrupts.

    // Check if there are any outstanding interrupts
    //Handle the interrupts
    int ipl = 0;
    int summary = 0;

    this->checkInterrupts = false;

    if (this->readMiscReg(IPR_ASTRR, 0))
        panic("asynchronous traps not implemented\n");

    if (this->readMiscReg(IPR_SIRR, 0)) {
        for (int i = INTLEVEL_SOFTWARE_MIN;
             i < INTLEVEL_SOFTWARE_MAX; i++) {
            if (this->readMiscReg(IPR_SIRR, 0) & (ULL(1) << i)) {
                // See table 4-19 of the 21164 hardware reference
                ipl = (i - INTLEVEL_SOFTWARE_MIN) + 1;
                summary |= (ULL(1) << i);
            }
        }
    }

    uint64_t interrupts = this->intr_status();

    if (interrupts) {
        for (int i = INTLEVEL_EXTERNAL_MIN;
             i < INTLEVEL_EXTERNAL_MAX; i++) {
            if (interrupts & (ULL(1) << i)) {
                // See table 4-19 of the 21164 hardware reference
                ipl = i;
                summary |= (ULL(1) << i);
            }
        }
    }

    if (ipl && ipl > this->readMiscReg(IPR_IPLR, 0)) {
        this->setMiscReg(IPR_ISR, summary, 0);
        this->setMiscReg(IPR_INTID, ipl, 0);
        this->trap(Fault(new InterruptFault), 0);
        DPRINTF(Flow, "Interrupt! IPLR=%d ipl=%d summary=%x\n",
                this->readMiscReg(IPR_IPLR, 0), ipl, summary);
    }
}

#endif // FULL_SYSTEM

#if !FULL_SYSTEM
template <class Impl>
TheISA::IntReg
AlphaFullCPU<Impl>::getSyscallArg(int i, int tid)
{
    return this->readArchIntReg(AlphaISA::ArgumentReg0 + i, tid);
}

template <class Impl>
void
AlphaFullCPU<Impl>::setSyscallArg(int i, IntReg val, int tid)
{
    this->setArchIntReg(AlphaISA::ArgumentReg0 + i, val, tid);
}

template <class Impl>
void
AlphaFullCPU<Impl>::setSyscallReturn(SyscallReturn return_value, int tid)
{
    // check for error condition.  Alpha syscall convention is to
    // indicate success/failure in reg a3 (r19) and put the
    // return value itself in the standard return value reg (v0).
    if (return_value.successful()) {
        // no error
        this->setArchIntReg(SyscallSuccessReg, 0, tid);
        this->setArchIntReg(ReturnValueReg, return_value.value(), tid);
    } else {
        // got an error, return details
        this->setArchIntReg(SyscallSuccessReg, (IntReg) -1, tid);
        this->setArchIntReg(ReturnValueReg, -return_value.value(), tid);
    }
}
#endif