summaryrefslogtreecommitdiff
path: root/cpu/ozone/thread_state.hh
blob: c6d23a63b7ed561c886f23a1830b85b8fbc08a23 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

#ifndef __CPU_OZONE_THREAD_STATE_HH__
#define __CPU_OZONE_THREAD_STATE_HH__

#include "arch/faults.hh"
#include "arch/isa_traits.hh"
#include "cpu/exec_context.hh"
#include "cpu/thread_state.hh"

class Event;
class Process;

#if FULL_SYSTEM
class EndQuiesceEvent;
class FunctionProfile;
class ProfileNode;
#else
class Process;
class FunctionalMemory;
#endif

// Maybe this ozone thread state should only really have committed state?
// I need to think about why I'm using this and what it's useful for.  Clearly
// has benefits for SMT; basically serves same use as CPUExecContext.
// Makes the ExecContext proxy easier.  Gives organization/central access point
// to state of a thread that can be accessed normally (i.e. not in-flight
// stuff within a OoO processor).  Does this need an XC proxy within it?
template <class Impl>
struct OzoneThreadState : public ThreadState {
    typedef typename ExecContext::Status Status;
    typedef typename Impl::FullCPU FullCPU;
    typedef TheISA::MiscReg MiscReg;

#if FULL_SYSTEM
    OzoneThreadState(FullCPU *_cpu, int _thread_num, FunctionalMemory *_mem)
        : ThreadState(-1, _thread_num, _mem),
          inSyscall(0), trapPending(0)
    {
        memset(&regs, 0, sizeof(TheISA::RegFile));
    }
#else
    OzoneThreadState(FullCPU *_cpu, int _thread_num, Process *_process, int _asid)
        : ThreadState(-1, _thread_num, NULL, _process, _asid),
          cpu(_cpu), inSyscall(0), trapPending(0)
    {
        memset(&regs, 0, sizeof(TheISA::RegFile));
    }

    OzoneThreadState(FullCPU *_cpu, int _thread_num, FunctionalMemory *_mem,
                     int _asid)
        : ThreadState(-1, _thread_num, _mem, NULL, _asid),
          cpu(_cpu), inSyscall(0), trapPending(0)
    {
        memset(&regs, 0, sizeof(TheISA::RegFile));
    }
#endif

    Status _status;

    Status status() const { return _status; }

    void setStatus(Status new_status) { _status = new_status; }

    RenameTable<Impl> renameTable; // Should I include backend and frontend
    // tables here?  For the ozone CPU, maybe, for the new full CPU, probably
    // not...you wouldn't want threads just accessing the backend/frontend
    // rename tables.
    Addr PC; // What should these be set to?  Probably the committed ones.
    Addr nextPC;

    // Current instruction?
    TheISA::MachInst inst;

    TheISA::RegFile regs;
    // Front end?  Back end?
//    MemReqPtr memReq;

    typename Impl::FullCPU *cpu;

    bool inSyscall;

    bool trapPending;

    ExecContext *xcProxy;

    ExecContext *getXCProxy() { return xcProxy; }

#if !FULL_SYSTEM

    Fault dummyTranslation(MemReqPtr &req)
    {
#if 0
        assert((req->vaddr >> 48 & 0xffff) == 0);
#endif

        // put the asid in the upper 16 bits of the paddr
        req->paddr = req->vaddr & ~((Addr)0xffff << sizeof(Addr) * 8 - 16);
        req->paddr = req->paddr | (Addr)req->asid << sizeof(Addr) * 8 - 16;
        return NoFault;
    }
    Fault translateInstReq(MemReqPtr &req)
    {
        return dummyTranslation(req);
    }
    Fault translateDataReadReq(MemReqPtr &req)
    {
        return dummyTranslation(req);
    }
    Fault translateDataWriteReq(MemReqPtr &req)
    {
        return dummyTranslation(req);
    }
#else
    Fault translateInstReq(MemReqPtr &req)
    {
        return cpu->itb->translate(req);
    }

    Fault translateDataReadReq(MemReqPtr &req)
    {
        return cpu->dtb->translate(req, false);
    }

    Fault translateDataWriteReq(MemReqPtr &req)
    {
        return cpu->dtb->translate(req, true);
    }
#endif

    MiscReg readMiscReg(int misc_reg)
    {
        return regs.miscRegs.readReg(misc_reg);
    }

    MiscReg readMiscRegWithEffect(int misc_reg, Fault &fault)
    {
        return regs.miscRegs.readRegWithEffect(misc_reg, fault, xcProxy);
    }

    Fault setMiscReg(int misc_reg, const MiscReg &val)
    {
        return regs.miscRegs.setReg(misc_reg, val);
    }

    Fault setMiscRegWithEffect(int misc_reg, const MiscReg &val)
    {
        return regs.miscRegs.setRegWithEffect(misc_reg, val, xcProxy);
    }

    uint64_t readPC()
    { return PC; }

    void setPC(uint64_t val)
    { PC = val; }

    uint64_t readNextPC()
    { return nextPC; }

    void setNextPC(uint64_t val)
    { nextPC = val; }

    bool misspeculating() { return false; }

    void setInst(TheISA::MachInst _inst) { inst = _inst; }

    Counter readFuncExeInst() { return funcExeInst; }

    void setFuncExeInst(Counter new_val) { funcExeInst = new_val; }
};

#endif // __CPU_OZONE_THREAD_STATE_HH__