summaryrefslogtreecommitdiff
path: root/cpu/simple_cpu/simple_cpu.hh
blob: a81d6365bc7dacd17f0a03da4c8851c667749c6d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
/*
 * Copyright (c) 2002-2004 The Regents of The University of Michigan
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#ifndef __CPU_SIMPLE_CPU_SIMPLE_CPU_HH__
#define __CPU_SIMPLE_CPU_SIMPLE_CPU_HH__

#include "base/statistics.hh"
#include "cpu/base_cpu.hh"
#include "cpu/exec_context.hh"
#include "cpu/pc_event.hh"
#include "cpu/static_inst.hh"
#include "sim/eventq.hh"

// forward declarations
#ifdef FULL_SYSTEM
class Processor;
class AlphaITB;
class AlphaDTB;
class PhysicalMemory;

class RemoteGDB;
class GDBListener;

#else

class Process;

#endif // FULL_SYSTEM

class MemInterface;
class Checkpoint;

namespace Trace {
    class InstRecord;
}

class SimpleCPU : public BaseCPU
{
  public:
    // main simulation loop (one cycle)
    void tick();

  private:
    struct TickEvent : public Event
    {
        SimpleCPU *cpu;
        int multiplier;

        TickEvent(SimpleCPU *c);
        void process();
        const char *description();
    };

    TickEvent tickEvent;

    /// Schedule tick event, regardless of its current state.
    void scheduleTickEvent(int delay)
    {
        if (tickEvent.squashed())
            tickEvent.reschedule(curTick + delay);
        else if (!tickEvent.scheduled())
            tickEvent.schedule(curTick + delay);
    }

    /// Unschedule tick event, regardless of its current state.
    void unscheduleTickEvent()
    {
        if (tickEvent.scheduled())
            tickEvent.squash();
    }

  public:
    void setTickMultiplier(int multiplier)
    {
        tickEvent.multiplier = multiplier;
    }

  private:
    Trace::InstRecord *traceData;

  public:
    //
    enum Status {
        Running,
        Idle,
        IcacheMissStall,
        IcacheMissComplete,
        DcacheMissStall,
        SwitchedOut
    };

  private:
    Status _status;

  public:
    void post_interrupt(int int_num, int index);

    void zero_fill_64(Addr addr) {
      static int warned = 0;
      if (!warned) {
        warn ("WH64 is not implemented");
        warned = 1;
      }
    };

#ifdef FULL_SYSTEM

    SimpleCPU(const std::string &_name,
              System *_system,
              Counter max_insts_any_thread, Counter max_insts_all_threads,
              Counter max_loads_any_thread, Counter max_loads_all_threads,
              AlphaITB *itb, AlphaDTB *dtb, FunctionalMemory *mem,
              MemInterface *icache_interface, MemInterface *dcache_interface,
              bool _def_reg, Tick freq,
              bool _function_trace, Tick _function_trace_start);

#else

    SimpleCPU(const std::string &_name, Process *_process,
              Counter max_insts_any_thread,
              Counter max_insts_all_threads,
              Counter max_loads_any_thread,
              Counter max_loads_all_threads,
              MemInterface *icache_interface, MemInterface *dcache_interface,
              bool _def_reg,
              bool _function_trace, Tick _function_trace_start);

#endif

    virtual ~SimpleCPU();

    // execution context
    ExecContext *xc;

    void switchOut();
    void takeOverFrom(BaseCPU *oldCPU);

#ifdef FULL_SYSTEM
    Addr dbg_vtophys(Addr addr);

    bool interval_stats;
#endif

    // L1 instruction cache
    MemInterface *icacheInterface;

    // L1 data cache
    MemInterface *dcacheInterface;

    // current instruction
    MachInst inst;

    // Refcounted pointer to the one memory request.
    MemReqPtr memReq;

    class CacheCompletionEvent : public Event
    {
      private:
        SimpleCPU *cpu;

      public:
        CacheCompletionEvent(SimpleCPU *_cpu);

        virtual void process();
        virtual const char *description();
    };

    CacheCompletionEvent cacheCompletionEvent;

    Status status() const { return _status; }

    virtual void activateContext(int thread_num, int delay);
    virtual void suspendContext(int thread_num);
    virtual void deallocateContext(int thread_num);
    virtual void haltContext(int thread_num);

    // statistics
    virtual void regStats();
    virtual void resetStats();

    // number of simulated instructions
    Counter numInst;
    Counter startNumInst;
    Stats::Scalar<> numInsts;

    virtual Counter totalInstructions() const
    {
        return numInst - startNumInst;
    }

    // number of simulated memory references
    Stats::Scalar<> numMemRefs;

    // number of simulated loads
    Counter numLoad;
    Counter startNumLoad;

    // number of idle cycles
    Stats::Average<> notIdleFraction;
    Stats::Formula idleFraction;

    // number of cycles stalled for I-cache misses
    Stats::Scalar<> icacheStallCycles;
    Counter lastIcacheStall;

    // number of cycles stalled for D-cache misses
    Stats::Scalar<> dcacheStallCycles;
    Counter lastDcacheStall;

    void processCacheCompletion();

    virtual void serialize(std::ostream &os);
    virtual void unserialize(Checkpoint *cp, const std::string &section);

    template <class T>
    Fault read(Addr addr, T &data, unsigned flags);

    template <class T>
    Fault write(T data, Addr addr, unsigned flags, uint64_t *res);

    // These functions are only used in CPU models that split
    // effective address computation from the actual memory access.
    void setEA(Addr EA) { panic("SimpleCPU::setEA() not implemented\n"); }
    Addr getEA() 	{ panic("SimpleCPU::getEA() not implemented\n"); }

    void prefetch(Addr addr, unsigned flags)
    {
        // need to do this...
    }

    void writeHint(Addr addr, int size, unsigned flags)
    {
        // need to do this...
    }

    Fault copySrcTranslate(Addr src);

    Fault copy(Addr dest);

    // The register accessor methods provide the index of the
    // instruction's operand (e.g., 0 or 1), not the architectural
    // register index, to simplify the implementation of register
    // renaming.  We find the architectural register index by indexing
    // into the instruction's own operand index table.  Note that a
    // raw pointer to the StaticInst is provided instead of a
    // ref-counted StaticInstPtr to redice overhead.  This is fine as
    // long as these methods don't copy the pointer into any long-term
    // storage (which is pretty hard to imagine they would have reason
    // to do).

    uint64_t readIntReg(StaticInst<TheISA> *si, int idx)
    {
        return xc->readIntReg(si->srcRegIdx(idx));
    }

    float readFloatRegSingle(StaticInst<TheISA> *si, int idx)
    {
        int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
        return xc->readFloatRegSingle(reg_idx);
    }

    double readFloatRegDouble(StaticInst<TheISA> *si, int idx)
    {
        int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
        return xc->readFloatRegDouble(reg_idx);
    }

    uint64_t readFloatRegInt(StaticInst<TheISA> *si, int idx)
    {
        int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
        return xc->readFloatRegInt(reg_idx);
    }

    void setIntReg(StaticInst<TheISA> *si, int idx, uint64_t val)
    {
        xc->setIntReg(si->destRegIdx(idx), val);
    }

    void setFloatRegSingle(StaticInst<TheISA> *si, int idx, float val)
    {
        int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
        xc->setFloatRegSingle(reg_idx, val);
    }

    void setFloatRegDouble(StaticInst<TheISA> *si, int idx, double val)
    {
        int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
        xc->setFloatRegDouble(reg_idx, val);
    }

    void setFloatRegInt(StaticInst<TheISA> *si, int idx, uint64_t val)
    {
        int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
        xc->setFloatRegInt(reg_idx, val);
    }

    uint64_t readPC() { return xc->readPC(); }
    void setNextPC(uint64_t val) { xc->setNextPC(val); }

    uint64_t readUniq() { return xc->readUniq(); }
    void setUniq(uint64_t val) { xc->setUniq(val); }

    uint64_t readFpcr() { return xc->readFpcr(); }
    void setFpcr(uint64_t val) { xc->setFpcr(val); }

#ifdef FULL_SYSTEM
    uint64_t readIpr(int idx, Fault &fault) { return xc->readIpr(idx, fault); }
    Fault setIpr(int idx, uint64_t val) { return xc->setIpr(idx, val); }
    Fault hwrei() { return xc->hwrei(); }
    int readIntrFlag() { return xc->readIntrFlag(); }
    void setIntrFlag(int val) { xc->setIntrFlag(val); }
    bool inPalMode() { return xc->inPalMode(); }
    void ev5_trap(Fault fault) { xc->ev5_trap(fault); }
    bool simPalCheck(int palFunc) { return xc->simPalCheck(palFunc); }
#else
    void syscall() { xc->syscall(); }
#endif

    bool misspeculating() { return xc->misspeculating(); }
    ExecContext *xcBase() { return xc; }
};

#endif // __CPU_SIMPLE_CPU_SIMPLE_CPU_HH__