summaryrefslogtreecommitdiff
path: root/dev/ide_disk.cc
blob: 39eb2e698a14635a5c9c507bb8d6c6d7984a109c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
/*
 * Copyright (c) 2004-2005 The Regents of The University of Michigan
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/** @file
 * Device model implementation for an IDE disk
 */

#include <cerrno>
#include <cstring>
#include <deque>
#include <string>

#include "base/cprintf.hh" // csprintf
#include "base/trace.hh"
#include "dev/disk_image.hh"
#include "dev/ide_disk.hh"
#include "dev/ide_ctrl.hh"
#include "dev/tsunami.hh"
#include "dev/tsunami_pchip.hh"
#include "mem/functional/physical.hh"
#include "mem/bus/bus.hh"
#include "mem/bus/dma_interface.hh"
#include "mem/bus/pio_interface.hh"
#include "mem/bus/pio_interface_impl.hh"
#include "sim/builder.hh"
#include "sim/sim_object.hh"
#include "sim/root.hh"
#include "targetarch/isa_traits.hh"

using namespace std;

IdeDisk::IdeDisk(const string &name, DiskImage *img, PhysicalMemory *phys,
                 int id, Tick delay)
    : SimObject(name), ctrl(NULL), image(img), physmem(phys), diskDelay(delay),
      dmaTransferEvent(this), dmaReadWaitEvent(this),
      dmaWriteWaitEvent(this), dmaPrdReadEvent(this),
      dmaReadEvent(this), dmaWriteEvent(this)
{
    // Reset the device state
    reset(id);

    // fill out the drive ID structure
    memset(&driveID, 0, sizeof(struct ataparams));

    // Calculate LBA and C/H/S values
    uint16_t cylinders;
    uint8_t heads;
    uint8_t sectors;

    uint32_t lba_size = image->size();
    if (lba_size >= 16383*16*63) {
        cylinders = 16383;
        heads = 16;
        sectors = 63;
    } else {
        if (lba_size >= 63)
            sectors = 63;
        else
            sectors = lba_size;

        if ((lba_size / sectors) >= 16)
            heads = 16;
        else
            heads = (lba_size / sectors);

        cylinders = lba_size / (heads * sectors);
    }

    // Setup the model name
    sprintf((char *)driveID.atap_model, "5MI EDD si k");
    // Set the maximum multisector transfer size
    driveID.atap_multi = MAX_MULTSECT;
    // IORDY supported, IORDY disabled, LBA enabled, DMA enabled
    driveID.atap_capabilities1 = 0x7;
    // UDMA support, EIDE support
    driveID.atap_extensions = 0x6;
    // Setup default C/H/S settings
    driveID.atap_cylinders = cylinders;
    driveID.atap_sectors = sectors;
    driveID.atap_heads = heads;
    // Setup the current multisector transfer size
    driveID.atap_curmulti = MAX_MULTSECT;
    driveID.atap_curmulti_valid = 0x1;
    // Number of sectors on disk
    driveID.atap_capacity = lba_size;
    // Multiword DMA mode 2 and below supported
    driveID.atap_dmamode_supp = 0x400;
    // Set PIO mode 4 and 3 supported
    driveID.atap_piomode_supp = 0x3;
    // Set DMA mode 4 and below supported
    driveID.atap_udmamode_supp = 0x10;
    // Statically set hardware config word
    driveID.atap_hwreset_res = 0x4001;

    //arbitrary for now...
    driveID.atap_ata_major = WDC_VER_ATA7;
}

IdeDisk::~IdeDisk()
{
    // destroy the data buffer
    delete [] dataBuffer;
}

void
IdeDisk::reset(int id)
{
    // initialize the data buffer and shadow registers
    dataBuffer = new uint8_t[MAX_DMA_SIZE];

    memset(dataBuffer, 0, MAX_DMA_SIZE);
    memset(&cmdReg, 0, sizeof(CommandReg_t));
    memset(&curPrd.entry, 0, sizeof(PrdEntry_t));

    dmaInterfaceBytes = 0;
    curPrdAddr = 0;
    curSector = 0;
    cmdBytes = 0;
    cmdBytesLeft = 0;
    drqBytesLeft = 0;
    dmaRead = false;
    intrPending = false;

    // set the device state to idle
    dmaState = Dma_Idle;

    if (id == DEV0) {
        devState = Device_Idle_S;
        devID = DEV0;
    } else if (id == DEV1) {
        devState = Device_Idle_NS;
        devID = DEV1;
    } else {
        panic("Invalid device ID: %#x\n", id);
    }

    // set the device ready bit
    status = STATUS_DRDY_BIT;

    cmdReg.error = 0x1;
}

////
// Utility functions
////

bool
IdeDisk::isDEVSelect()
{
    return ctrl->isDiskSelected(this);
}

Addr
IdeDisk::pciToDma(Addr pciAddr)
{
    if (ctrl)
        return ctrl->plat->pciToDma(pciAddr);
    else
        panic("Access to unset controller!\n");
}

uint32_t
IdeDisk::bytesInDmaPage(Addr curAddr, uint32_t bytesLeft)
{
    uint32_t bytesInPage = 0;

    // First calculate how many bytes could be in the page
    if (bytesLeft > TheISA::PageBytes)
        bytesInPage = TheISA::PageBytes;
    else
        bytesInPage = bytesLeft;

    // Next, see if we have crossed a page boundary, and adjust
    Addr upperBound = curAddr + bytesInPage;
    Addr pageBound = TheISA::TruncPage(curAddr) + TheISA::PageBytes;

    assert(upperBound >= curAddr && "DMA read wraps around address space!\n");

    if (upperBound >= pageBound)
        bytesInPage = pageBound - curAddr;

    return bytesInPage;
}

////
// Device registers read/write
////

void
IdeDisk::read(const Addr &offset, RegType_t type, uint8_t *data)
{
    DevAction_t action = ACT_NONE;

    switch (type) {
      case COMMAND_BLOCK:
        switch (offset) {
          // Data transfers occur two bytes at a time
          case DATA_OFFSET:
            memcpy(data, &cmdReg.data, sizeof(uint16_t));
            action = ACT_DATA_READ_SHORT;
            break;
          case ERROR_OFFSET:
            *data = cmdReg.error;
            break;
          case NSECTOR_OFFSET:
            *data = cmdReg.sec_count;
            break;
          case SECTOR_OFFSET:
            *data = cmdReg.sec_num;
            break;
          case LCYL_OFFSET:
            *data = cmdReg.cyl_low;
            break;
          case HCYL_OFFSET:
            *data = cmdReg.cyl_high;
            break;
          case DRIVE_OFFSET:
            *data = cmdReg.drive;
            break;
          case STATUS_OFFSET:
            *data = status;
            action = ACT_STAT_READ;
            break;
          default:
            panic("Invalid IDE command register offset: %#x\n", offset);
        }
        break;
      case CONTROL_BLOCK:
        if (offset == ALTSTAT_OFFSET)
            *data = status;
        else
            panic("Invalid IDE control register offset: %#x\n", offset);
        break;
      default:
        panic("Unknown register block!\n");
    }

    if (action != ACT_NONE)
        updateState(action);
}

void
IdeDisk::write(const Addr &offset, RegType_t type, const uint8_t *data)
{
    DevAction_t action = ACT_NONE;

    switch (type) {
      case COMMAND_BLOCK:
        switch (offset) {
          case DATA_OFFSET:
            memcpy(&cmdReg.data, data, sizeof(uint16_t));
            action = ACT_DATA_WRITE_SHORT;
            break;
          case FEATURES_OFFSET:
            break;
          case NSECTOR_OFFSET:
            cmdReg.sec_count = *data;
            break;
          case SECTOR_OFFSET:
            cmdReg.sec_num = *data;
            break;
          case LCYL_OFFSET:
            cmdReg.cyl_low = *data;
            break;
          case HCYL_OFFSET:
            cmdReg.cyl_high = *data;
            break;
          case DRIVE_OFFSET:
            cmdReg.drive = *data;
            action = ACT_SELECT_WRITE;
            break;
          case COMMAND_OFFSET:
            cmdReg.command = *data;
            action = ACT_CMD_WRITE;
            break;
          default:
            panic("Invalid IDE command register offset: %#x\n", offset);
        }
        break;
      case CONTROL_BLOCK:
        if (offset == CONTROL_OFFSET) {
            if (*data & CONTROL_RST_BIT) {
                // force the device into the reset state
                devState = Device_Srst;
                action = ACT_SRST_SET;
            } else if (devState == Device_Srst && !(*data & CONTROL_RST_BIT))
                action = ACT_SRST_CLEAR;

            nIENBit = (*data & CONTROL_IEN_BIT) ? true : false;
        }
        else
            panic("Invalid IDE control register offset: %#x\n", offset);
        break;
      default:
        panic("Unknown register block!\n");
    }

    if (action != ACT_NONE)
        updateState(action);
}

////
// Perform DMA transactions
////

void
IdeDisk::doDmaTransfer()
{
    if (dmaState != Dma_Transfer || devState != Transfer_Data_Dma)
        panic("Inconsistent DMA transfer state: dmaState = %d devState = %d\n",
              dmaState, devState);

    // first read the current PRD
    if (dmaInterface) {
        if (dmaInterface->busy()) {
            // reschedule after waiting period
            dmaTransferEvent.schedule(curTick + DMA_BACKOFF_PERIOD);
            return;
        }

        dmaInterface->doDMA(Read, curPrdAddr, sizeof(PrdEntry_t), curTick,
                            &dmaPrdReadEvent);
    } else {
        dmaPrdReadDone();
    }
}

void
IdeDisk::dmaPrdReadDone()
{
    // actually copy the PRD from physical memory
    memcpy((void *)&curPrd.entry,
           physmem->dma_addr(curPrdAddr, sizeof(PrdEntry_t)),
           sizeof(PrdEntry_t));

    DPRINTF(IdeDisk,
            "PRD: baseAddr:%#x (%#x) byteCount:%d (%d) eot:%#x sector:%d\n",
            curPrd.getBaseAddr(), pciToDma(curPrd.getBaseAddr()),
            curPrd.getByteCount(), (cmdBytesLeft/SectorSize),
            curPrd.getEOT(), curSector);

    // the prd pointer has already been translated, so just do an increment
    curPrdAddr = curPrdAddr + sizeof(PrdEntry_t);

    if (dmaRead)
        doDmaRead();
    else
        doDmaWrite();
}

void
IdeDisk::doDmaRead()
{
    /** @todo we need to figure out what the delay actually will be */
    Tick totalDiskDelay = diskDelay + (curPrd.getByteCount() / SectorSize);

    DPRINTF(IdeDisk, "doDmaRead, diskDelay: %d totalDiskDelay: %d\n",
            diskDelay, totalDiskDelay);
    if (dmaInterface) {
        if (dmaInterface->busy()) {
            // reschedule after waiting period
            dmaReadWaitEvent.schedule(curTick + DMA_BACKOFF_PERIOD);
            return;
        }

        Addr dmaAddr = pciToDma(curPrd.getBaseAddr());

        uint32_t bytesInPage = bytesInDmaPage(curPrd.getBaseAddr(),
                                              (uint32_t)curPrd.getByteCount());

        dmaInterfaceBytes = bytesInPage;

        dmaInterface->doDMA(Read, dmaAddr, bytesInPage,
                            curTick + totalDiskDelay, &dmaReadEvent);
    } else {
        // schedule dmaReadEvent with sectorDelay (dmaReadDone)
        dmaReadEvent.schedule(curTick + totalDiskDelay);
    }
}

void
IdeDisk::dmaReadDone()
{

    Addr curAddr = 0, dmaAddr = 0;
    uint32_t bytesWritten = 0, bytesInPage = 0, bytesLeft = 0;

    // continue to use the DMA interface until all pages are read
    if (dmaInterface && (dmaInterfaceBytes < curPrd.getByteCount())) {
        // see if the interface is busy
        if (dmaInterface->busy()) {
            // reschedule after waiting period
            dmaReadEvent.schedule(curTick + DMA_BACKOFF_PERIOD);
            return;
        }

        uint32_t bytesLeft = curPrd.getByteCount() - dmaInterfaceBytes;
        curAddr = curPrd.getBaseAddr() + dmaInterfaceBytes;
        dmaAddr = pciToDma(curAddr);

        bytesInPage = bytesInDmaPage(curAddr, bytesLeft);
        dmaInterfaceBytes += bytesInPage;

        dmaInterface->doDMA(Read, dmaAddr, bytesInPage,
                            curTick, &dmaReadEvent);

        return;
    }

    // set initial address
    curAddr = curPrd.getBaseAddr();

    // clear out the data buffer
    memset(dataBuffer, 0, MAX_DMA_SIZE);

    // read the data from memory via DMA into a data buffer
    while (bytesWritten < curPrd.getByteCount()) {
        if (cmdBytesLeft <= 0)
            panic("DMA data is larger than # of sectors specified\n");

        dmaAddr = pciToDma(curAddr);

        // calculate how many bytes are in the current page
        bytesLeft = curPrd.getByteCount() - bytesWritten;
        bytesInPage = bytesInDmaPage(curAddr, bytesLeft);

        // copy the data from memory into the data buffer
        memcpy((void *)(dataBuffer + bytesWritten),
               physmem->dma_addr(dmaAddr, bytesInPage),
               bytesInPage);

        curAddr += bytesInPage;
        bytesWritten += bytesInPage;
        cmdBytesLeft -= bytesInPage;
    }

    // write the data to the disk image
    for (bytesWritten = 0;
         bytesWritten < curPrd.getByteCount();
         bytesWritten += SectorSize) {

        writeDisk(curSector++, (uint8_t *)(dataBuffer + bytesWritten));
    }

    // check for the EOT
    if (curPrd.getEOT()) {
        assert(cmdBytesLeft == 0);
        dmaState = Dma_Idle;
        updateState(ACT_DMA_DONE);
    } else {
        doDmaTransfer();
    }
}

void
IdeDisk::doDmaWrite()
{
    /** @todo we need to figure out what the delay actually will be */
    Tick totalDiskDelay = diskDelay + (curPrd.getByteCount() / SectorSize);

    DPRINTF(IdeDisk, "doDmaWrite, diskDelay: %d totalDiskDelay: %d\n",
            diskDelay, totalDiskDelay);

    if (dmaInterface) {
        if (dmaInterface->busy()) {
            // reschedule after waiting period
            dmaWriteWaitEvent.schedule(curTick + DMA_BACKOFF_PERIOD);
            return;
        }

        Addr dmaAddr = pciToDma(curPrd.getBaseAddr());

        uint32_t bytesInPage = bytesInDmaPage(curPrd.getBaseAddr(),
                                              (uint32_t)curPrd.getByteCount());

        dmaInterfaceBytes = bytesInPage;

        dmaInterface->doDMA(WriteInvalidate, dmaAddr,
                            bytesInPage, curTick + totalDiskDelay,
                            &dmaWriteEvent);
    } else {
        // schedule event with disk delay (dmaWriteDone)
        dmaWriteEvent.schedule(curTick + totalDiskDelay);
    }
}

void
IdeDisk::dmaWriteDone()
{
    Addr curAddr = 0, pageAddr = 0, dmaAddr = 0;
    uint32_t bytesRead = 0, bytesInPage = 0;

    // continue to use the DMA interface until all pages are read
    if (dmaInterface && (dmaInterfaceBytes < curPrd.getByteCount())) {
        // see if the interface is busy
        if (dmaInterface->busy()) {
            // reschedule after waiting period
            dmaWriteEvent.schedule(curTick + DMA_BACKOFF_PERIOD);
            return;
        }

        uint32_t bytesLeft = curPrd.getByteCount() - dmaInterfaceBytes;
        curAddr = curPrd.getBaseAddr() + dmaInterfaceBytes;
        dmaAddr = pciToDma(curAddr);

        bytesInPage = bytesInDmaPage(curAddr, bytesLeft);
        dmaInterfaceBytes += bytesInPage;

        dmaInterface->doDMA(WriteInvalidate, dmaAddr,
                            bytesInPage, curTick,
                            &dmaWriteEvent);

        return;
    }

    // setup the initial page and DMA address
    curAddr = curPrd.getBaseAddr();
    pageAddr = TheISA::TruncPage(curAddr);
    dmaAddr = pciToDma(curAddr);

    // clear out the data buffer
    memset(dataBuffer, 0, MAX_DMA_SIZE);

    while (bytesRead < curPrd.getByteCount()) {
        // see if we have crossed into a new page
        if (pageAddr != TheISA::TruncPage(curAddr)) {
            // write the data to memory
            memcpy(physmem->dma_addr(dmaAddr, bytesInPage),
                   (void *)(dataBuffer + (bytesRead - bytesInPage)),
                   bytesInPage);

            // update the DMA address and page address
            pageAddr = TheISA::TruncPage(curAddr);
            dmaAddr = pciToDma(curAddr);

            bytesInPage = 0;
        }

        if (cmdBytesLeft <= 0)
            panic("DMA requested data is larger than # sectors specified\n");

        readDisk(curSector++, (uint8_t *)(dataBuffer + bytesRead));

        curAddr += SectorSize;
        bytesRead += SectorSize;
        bytesInPage += SectorSize;
        cmdBytesLeft -= SectorSize;
    }

    // write the last page worth read to memory
    if (bytesInPage != 0) {
        memcpy(physmem->dma_addr(dmaAddr, bytesInPage),
               (void *)(dataBuffer + (bytesRead - bytesInPage)),
               bytesInPage);
    }

    // check for the EOT
    if (curPrd.getEOT()) {
        assert(cmdBytesLeft == 0);
        dmaState = Dma_Idle;
        updateState(ACT_DMA_DONE);
    } else {
        doDmaTransfer();
    }
}

////
// Disk utility routines
///

void
IdeDisk::readDisk(uint32_t sector, uint8_t *data)
{
    uint32_t bytesRead = image->read(data, sector);

    if (bytesRead != SectorSize)
        panic("Can't read from %s. Only %d of %d read. errno=%d\n",
              name(), bytesRead, SectorSize, errno);
}

void
IdeDisk::writeDisk(uint32_t sector, uint8_t *data)
{
    uint32_t bytesWritten = image->write(data, sector);

    if (bytesWritten != SectorSize)
        panic("Can't write to %s. Only %d of %d written. errno=%d\n",
              name(), bytesWritten, SectorSize, errno);
}

////
// Setup and handle commands
////

void
IdeDisk::startDma(const uint32_t &prdTableBase)
{
    if (dmaState != Dma_Start)
        panic("Inconsistent DMA state, should be in Dma_Start!\n");

    if (devState != Transfer_Data_Dma)
        panic("Inconsistent device state for DMA start!\n");

    // PRD base address is given by bits 31:2
    curPrdAddr = pciToDma((Addr)(prdTableBase & ~ULL(0x3)));

    dmaState = Dma_Transfer;

    // schedule dma transfer (doDmaTransfer)
    dmaTransferEvent.schedule(curTick + 1);
}

void
IdeDisk::abortDma()
{
    if (dmaState == Dma_Idle)
        panic("Inconsistent DMA state, should be Start or Transfer!");

    if (devState != Transfer_Data_Dma && devState != Prepare_Data_Dma)
        panic("Inconsistent device state, should be Transfer or Prepare!\n");

    updateState(ACT_CMD_ERROR);
}

void
IdeDisk::startCommand()
{
    DevAction_t action = ACT_NONE;
    uint32_t size = 0;
    dmaRead = false;

    // Decode commands
    switch (cmdReg.command) {
        // Supported non-data commands
      case WDSF_READ_NATIVE_MAX:
        size = image->size() - 1;
        cmdReg.sec_num = (size & 0xff);
        cmdReg.cyl_low = ((size & 0xff00) >> 8);
        cmdReg.cyl_high = ((size & 0xff0000) >> 16);
        cmdReg.head = ((size & 0xf000000) >> 24);

        devState = Command_Execution;
        action = ACT_CMD_COMPLETE;
        break;

      case WDCC_RECAL:
      case WDCC_IDP:
      case WDCC_STANDBY_IMMED:
      case WDCC_FLUSHCACHE:
      case WDSF_VERIFY:
      case WDSF_SEEK:
      case SET_FEATURES:
      case WDCC_SETMULTI:
        devState = Command_Execution;
        action = ACT_CMD_COMPLETE;
        break;

        // Supported PIO data-in commands
      case WDCC_IDENTIFY:
        cmdBytes = cmdBytesLeft = sizeof(struct ataparams);
        devState = Prepare_Data_In;
        action = ACT_DATA_READY;
        break;

      case WDCC_READMULTI:
      case WDCC_READ:
        if (!(cmdReg.drive & DRIVE_LBA_BIT))
            panic("Attempt to perform CHS access, only supports LBA\n");

        if (cmdReg.sec_count == 0)
            cmdBytes = cmdBytesLeft = (256 * SectorSize);
        else
            cmdBytes = cmdBytesLeft = (cmdReg.sec_count * SectorSize);

        curSector = getLBABase();

        /** @todo make this a scheduled event to simulate disk delay */
        devState = Prepare_Data_In;
        action = ACT_DATA_READY;
        break;

        // Supported PIO data-out commands
      case WDCC_WRITEMULTI:
      case WDCC_WRITE:
        if (!(cmdReg.drive & DRIVE_LBA_BIT))
            panic("Attempt to perform CHS access, only supports LBA\n");

        if (cmdReg.sec_count == 0)
            cmdBytes = cmdBytesLeft = (256 * SectorSize);
        else
            cmdBytes = cmdBytesLeft = (cmdReg.sec_count * SectorSize);

        curSector = getLBABase();

        devState = Prepare_Data_Out;
        action = ACT_DATA_READY;
        break;

        // Supported DMA commands
      case WDCC_WRITEDMA:
        dmaRead = true;  // a write to the disk is a DMA read from memory
      case WDCC_READDMA:
        if (!(cmdReg.drive & DRIVE_LBA_BIT))
            panic("Attempt to perform CHS access, only supports LBA\n");

        if (cmdReg.sec_count == 0)
            cmdBytes = cmdBytesLeft = (256 * SectorSize);
        else
            cmdBytes = cmdBytesLeft = (cmdReg.sec_count * SectorSize);

        curSector = getLBABase();

        devState = Prepare_Data_Dma;
        action = ACT_DMA_READY;
        break;

      default:
        panic("Unsupported ATA command: %#x\n", cmdReg.command);
    }

    if (action != ACT_NONE) {
        // set the BSY bit
        status |= STATUS_BSY_BIT;
        // clear the DRQ bit
        status &= ~STATUS_DRQ_BIT;
        // clear the DF bit
        status &= ~STATUS_DF_BIT;

        updateState(action);
    }
}

////
// Handle setting and clearing interrupts
////

void
IdeDisk::intrPost()
{
    DPRINTF(IdeDisk, "Posting Interrupt\n");
    if (intrPending)
        panic("Attempt to post an interrupt with one pending\n");

    intrPending = true;

    // talk to controller to set interrupt
    if (ctrl) {
        ctrl->bmi_regs.bmis0 |= IDEINTS;
        ctrl->intrPost();
    }
}

void
IdeDisk::intrClear()
{
    DPRINTF(IdeDisk, "Clearing Interrupt\n");
    if (!intrPending)
        panic("Attempt to clear a non-pending interrupt\n");

    intrPending = false;

    // talk to controller to clear interrupt
    if (ctrl)
        ctrl->intrClear();
}

////
// Manage the device internal state machine
////

void
IdeDisk::updateState(DevAction_t action)
{
    switch (devState) {
      case Device_Srst:
        if (action == ACT_SRST_SET) {
            // set the BSY bit
            status |= STATUS_BSY_BIT;
        } else if (action == ACT_SRST_CLEAR) {
            // clear the BSY bit
            status &= ~STATUS_BSY_BIT;

            // reset the device state
            reset(devID);
        }
        break;

      case Device_Idle_S:
        if (action == ACT_SELECT_WRITE && !isDEVSelect()) {
            devState = Device_Idle_NS;
        } else if (action == ACT_CMD_WRITE) {
            startCommand();
        }

        break;

      case Device_Idle_SI:
        if (action == ACT_SELECT_WRITE && !isDEVSelect()) {
            devState = Device_Idle_NS;
            intrClear();
        } else if (action == ACT_STAT_READ || isIENSet()) {
            devState = Device_Idle_S;
            intrClear();
        } else if (action == ACT_CMD_WRITE) {
            intrClear();
            startCommand();
        }

        break;

      case Device_Idle_NS:
        if (action == ACT_SELECT_WRITE && isDEVSelect()) {
            if (!isIENSet() && intrPending) {
                devState = Device_Idle_SI;
                intrPost();
            }
            if (isIENSet() || !intrPending) {
                devState = Device_Idle_S;
            }
        }
        break;

      case Command_Execution:
        if (action == ACT_CMD_COMPLETE) {
            // clear the BSY bit
            setComplete();

            if (!isIENSet()) {
                devState = Device_Idle_SI;
                intrPost();
            } else {
                devState = Device_Idle_S;
            }
        }
        break;

      case Prepare_Data_In:
        if (action == ACT_CMD_ERROR) {
            // clear the BSY bit
            setComplete();

            if (!isIENSet()) {
                devState = Device_Idle_SI;
                intrPost();
            } else {
                devState = Device_Idle_S;
            }
        } else if (action == ACT_DATA_READY) {
            // clear the BSY bit
            status &= ~STATUS_BSY_BIT;
            // set the DRQ bit
            status |= STATUS_DRQ_BIT;

            // copy the data into the data buffer
            if (cmdReg.command == WDCC_IDENTIFY) {
                // Reset the drqBytes for this block
                drqBytesLeft = sizeof(struct ataparams);

                memcpy((void *)dataBuffer, (void *)&driveID,
                       sizeof(struct ataparams));
            } else {
                // Reset the drqBytes for this block
                drqBytesLeft = SectorSize;

                readDisk(curSector++, dataBuffer);
            }

            // put the first two bytes into the data register
            memcpy((void *)&cmdReg.data, (void *)dataBuffer,
                   sizeof(uint16_t));

            if (!isIENSet()) {
                devState = Data_Ready_INTRQ_In;
                intrPost();
            } else {
                devState = Transfer_Data_In;
            }
        }
        break;

      case Data_Ready_INTRQ_In:
        if (action == ACT_STAT_READ) {
            devState = Transfer_Data_In;
            intrClear();
        }
        break;

      case Transfer_Data_In:
        if (action == ACT_DATA_READ_BYTE || action == ACT_DATA_READ_SHORT) {
            if (action == ACT_DATA_READ_BYTE) {
                panic("DEBUG: READING DATA ONE BYTE AT A TIME!\n");
            } else {
                drqBytesLeft -= 2;
                cmdBytesLeft -= 2;

                // copy next short into data registers
                if (drqBytesLeft)
                    memcpy((void *)&cmdReg.data,
                           (void *)&dataBuffer[SectorSize - drqBytesLeft],
                           sizeof(uint16_t));
            }

            if (drqBytesLeft == 0) {
                if (cmdBytesLeft == 0) {
                    // Clear the BSY bit
                    setComplete();
                    devState = Device_Idle_S;
                } else {
                    devState = Prepare_Data_In;
                    // set the BSY_BIT
                    status |= STATUS_BSY_BIT;
                    // clear the DRQ_BIT
                    status &= ~STATUS_DRQ_BIT;

                    /** @todo change this to a scheduled event to simulate
                        disk delay */
                    updateState(ACT_DATA_READY);
                }
            }
        }
        break;

      case Prepare_Data_Out:
        if (action == ACT_CMD_ERROR || cmdBytesLeft == 0) {
            // clear the BSY bit
            setComplete();

            if (!isIENSet()) {
                devState = Device_Idle_SI;
                intrPost();
            } else {
                devState = Device_Idle_S;
            }
        } else if (action == ACT_DATA_READY && cmdBytesLeft != 0) {
            // clear the BSY bit
            status &= ~STATUS_BSY_BIT;
            // set the DRQ bit
            status |= STATUS_DRQ_BIT;

            // clear the data buffer to get it ready for writes
            memset(dataBuffer, 0, MAX_DMA_SIZE);

            // reset the drqBytes for this block
            drqBytesLeft = SectorSize;

            if (cmdBytesLeft == cmdBytes || isIENSet()) {
                devState = Transfer_Data_Out;
            } else {
                devState = Data_Ready_INTRQ_Out;
                intrPost();
            }
        }
        break;

      case Data_Ready_INTRQ_Out:
        if (action == ACT_STAT_READ) {
            devState = Transfer_Data_Out;
            intrClear();
        }
        break;

      case Transfer_Data_Out:
        if (action == ACT_DATA_WRITE_BYTE ||
            action == ACT_DATA_WRITE_SHORT) {

            if (action == ACT_DATA_READ_BYTE) {
                panic("DEBUG: WRITING DATA ONE BYTE AT A TIME!\n");
            } else {
                // copy the latest short into the data buffer
                memcpy((void *)&dataBuffer[SectorSize - drqBytesLeft],
                       (void *)&cmdReg.data,
                       sizeof(uint16_t));

                drqBytesLeft -= 2;
                cmdBytesLeft -= 2;
            }

            if (drqBytesLeft == 0) {
                // copy the block to the disk
                writeDisk(curSector++, dataBuffer);

                // set the BSY bit
                status |= STATUS_BSY_BIT;
                // set the seek bit
                status |= STATUS_SEEK_BIT;
                // clear the DRQ bit
                status &= ~STATUS_DRQ_BIT;

                devState = Prepare_Data_Out;

                /** @todo change this to a scheduled event to simulate
                    disk delay */
                updateState(ACT_DATA_READY);
            }
        }
        break;

      case Prepare_Data_Dma:
        if (action == ACT_CMD_ERROR) {
            // clear the BSY bit
            setComplete();

            if (!isIENSet()) {
                devState = Device_Idle_SI;
                intrPost();
            } else {
                devState = Device_Idle_S;
            }
        } else if (action == ACT_DMA_READY) {
            // clear the BSY bit
            status &= ~STATUS_BSY_BIT;
            // set the DRQ bit
            status |= STATUS_DRQ_BIT;

            devState = Transfer_Data_Dma;

            if (dmaState != Dma_Idle)
                panic("Inconsistent DMA state, should be Dma_Idle\n");

            dmaState = Dma_Start;
            // wait for the write to the DMA start bit
        }
        break;

      case Transfer_Data_Dma:
        if (action == ACT_CMD_ERROR || action == ACT_DMA_DONE) {
            // clear the BSY bit
            setComplete();
            // set the seek bit
            status |= STATUS_SEEK_BIT;
            // clear the controller state for DMA transfer
            ctrl->setDmaComplete(this);

            if (!isIENSet()) {
                devState = Device_Idle_SI;
                intrPost();
            } else {
                devState = Device_Idle_S;
            }
        }
        break;

      default:
        panic("Unknown IDE device state: %#x\n", devState);
    }
}

void
IdeDisk::serialize(ostream &os)
{
    // Check all outstanding events to see if they are scheduled
    // these are all mutually exclusive
    Tick reschedule = 0;
    Events_t event = None;

    int eventCount = 0;

    if (dmaTransferEvent.scheduled()) {
        reschedule = dmaTransferEvent.when();
        event = Transfer;
        eventCount++;
    }
    if (dmaReadWaitEvent.scheduled()) {
        reschedule = dmaReadWaitEvent.when();
        event = ReadWait;
        eventCount++;
    }
    if (dmaWriteWaitEvent.scheduled()) {
        reschedule = dmaWriteWaitEvent.when();
        event = WriteWait;
        eventCount++;
    }
    if (dmaPrdReadEvent.scheduled()) {
        reschedule = dmaPrdReadEvent.when();
        event = PrdRead;
        eventCount++;
    }
    if (dmaReadEvent.scheduled()) {
        reschedule = dmaReadEvent.when();
        event = DmaRead;
        eventCount++;
    }
    if (dmaWriteEvent.scheduled()) {
        reschedule = dmaWriteEvent.when();
        event = DmaWrite;
        eventCount++;
    }

    assert(eventCount <= 1);

    SERIALIZE_SCALAR(reschedule);
    SERIALIZE_ENUM(event);

    // Serialize device registers
    SERIALIZE_SCALAR(cmdReg.data);
    SERIALIZE_SCALAR(cmdReg.sec_count);
    SERIALIZE_SCALAR(cmdReg.sec_num);
    SERIALIZE_SCALAR(cmdReg.cyl_low);
    SERIALIZE_SCALAR(cmdReg.cyl_high);
    SERIALIZE_SCALAR(cmdReg.drive);
    SERIALIZE_SCALAR(cmdReg.command);
    SERIALIZE_SCALAR(status);
    SERIALIZE_SCALAR(nIENBit);
    SERIALIZE_SCALAR(devID);

    // Serialize the PRD related information
    SERIALIZE_SCALAR(curPrd.entry.baseAddr);
    SERIALIZE_SCALAR(curPrd.entry.byteCount);
    SERIALIZE_SCALAR(curPrd.entry.endOfTable);
    SERIALIZE_SCALAR(curPrdAddr);

    // Serialize current transfer related information
    SERIALIZE_SCALAR(cmdBytesLeft);
    SERIALIZE_SCALAR(cmdBytes);
    SERIALIZE_SCALAR(drqBytesLeft);
    SERIALIZE_SCALAR(curSector);
    SERIALIZE_SCALAR(dmaRead);
    SERIALIZE_SCALAR(dmaInterfaceBytes);
    SERIALIZE_SCALAR(intrPending);
    SERIALIZE_ENUM(devState);
    SERIALIZE_ENUM(dmaState);
    SERIALIZE_ARRAY(dataBuffer, MAX_DMA_SIZE);
}

void
IdeDisk::unserialize(Checkpoint *cp, const string &section)
{
    // Reschedule events that were outstanding
    // these are all mutually exclusive
    Tick reschedule = 0;
    Events_t event = None;

    UNSERIALIZE_SCALAR(reschedule);
    UNSERIALIZE_ENUM(event);

    switch (event) {
      case None : break;
      case Transfer : dmaTransferEvent.schedule(reschedule); break;
      case ReadWait : dmaReadWaitEvent.schedule(reschedule); break;
      case WriteWait : dmaWriteWaitEvent.schedule(reschedule); break;
      case PrdRead : dmaPrdReadEvent.schedule(reschedule); break;
      case DmaRead : dmaReadEvent.schedule(reschedule); break;
      case DmaWrite : dmaWriteEvent.schedule(reschedule); break;
    }

    // Unserialize device registers
    UNSERIALIZE_SCALAR(cmdReg.data);
    UNSERIALIZE_SCALAR(cmdReg.sec_count);
    UNSERIALIZE_SCALAR(cmdReg.sec_num);
    UNSERIALIZE_SCALAR(cmdReg.cyl_low);
    UNSERIALIZE_SCALAR(cmdReg.cyl_high);
    UNSERIALIZE_SCALAR(cmdReg.drive);
    UNSERIALIZE_SCALAR(cmdReg.command);
    UNSERIALIZE_SCALAR(status);
    UNSERIALIZE_SCALAR(nIENBit);
    UNSERIALIZE_SCALAR(devID);

    // Unserialize the PRD related information
    UNSERIALIZE_SCALAR(curPrd.entry.baseAddr);
    UNSERIALIZE_SCALAR(curPrd.entry.byteCount);
    UNSERIALIZE_SCALAR(curPrd.entry.endOfTable);
    UNSERIALIZE_SCALAR(curPrdAddr);

    // Unserialize current transfer related information
    UNSERIALIZE_SCALAR(cmdBytes);
    UNSERIALIZE_SCALAR(cmdBytesLeft);
    UNSERIALIZE_SCALAR(drqBytesLeft);
    UNSERIALIZE_SCALAR(curSector);
    UNSERIALIZE_SCALAR(dmaRead);
    UNSERIALIZE_SCALAR(dmaInterfaceBytes);
    UNSERIALIZE_SCALAR(intrPending);
    UNSERIALIZE_ENUM(devState);
    UNSERIALIZE_ENUM(dmaState);
    UNSERIALIZE_ARRAY(dataBuffer, MAX_DMA_SIZE);
}

#ifndef DOXYGEN_SHOULD_SKIP_THIS

enum DriveID { master, slave };
static const char *DriveID_strings[] = { "master", "slave" };
BEGIN_DECLARE_SIM_OBJECT_PARAMS(IdeDisk)

    SimObjectParam<DiskImage *> image;
    SimObjectParam<PhysicalMemory *> physmem;
    SimpleEnumParam<DriveID> driveID;
    Param<int> delay;

END_DECLARE_SIM_OBJECT_PARAMS(IdeDisk)

BEGIN_INIT_SIM_OBJECT_PARAMS(IdeDisk)

    INIT_PARAM(image, "Disk image"),
    INIT_PARAM(physmem, "Physical memory"),
    INIT_ENUM_PARAM(driveID, "Drive ID (0=master 1=slave)", DriveID_strings),
    INIT_PARAM_DFLT(delay, "Fixed disk delay in microseconds", 1)

END_INIT_SIM_OBJECT_PARAMS(IdeDisk)


CREATE_SIM_OBJECT(IdeDisk)
{
    return new IdeDisk(getInstanceName(), image, physmem, driveID, delay);
}

REGISTER_SIM_OBJECT("IdeDisk", IdeDisk)

#endif //DOXYGEN_SHOULD_SKIP_THIS